RAIF: Redundant Array of Independent Filesystems

Nikolai Joukov!?, Arun M. Krishnakumar!, Chaitanya Patti', Abhishek Rai!,
Sunil Satnur®, Avishay Traeger!, and Erez Zadok'

L Stony Brook University,

2 IBM T.J. Watson Research Center

Appears in the proceedings of the 24'" IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)

Abstract

Storage virtualization and data management are well
known problems for individual users as well as large orga-
nizations. Existing storage-virtualization systems either do
not support a complete set of possible storage types, do not
provide flexible data-placement policies, or do not support
per-file conversion (e.g., encryption). This results in subop-
timal utilization of resources, inconvenience, low reliability,
and poor performance.

We have designed a stackable file system called Redun-
dant Array of Independent Filesystems (RAIF). It combines
the data survivability and performance benefits of tradi-
tional RAID with the flexibility of composition and ease of
development of stackable file systems. RAIF can be mounted
on top of directories and thus on top of any combination
of network, distributed, disk-based, and memory-based file
systems. Individual files can be replicated, striped, or stored
with erasure-correction coding on any subset of the under-
lying file systems.

RAIF has similar performance to RAID. In configura-
tions with parity, RAIF’s write performance is better than
the performance of driver-level and even entry-level hard-
ware RAID systems. This is because RAIF has better control
over the data and parity caching.

1 Introduction

The importance of files varies greatly. If lost, some files
can be easily regenerated, some can be regenerated with
difficulty, and some cannot be regenerated at all. The
loss of some files, such as financial data, can be catas-
trophic. Therefore, files must be stored with varying levels
of redundancy using data replication or erasure-correction
codes. File storage is a complicated set of trade-offs be-
tween data protection, performance, data management con-
venience, and special infrastructure requirements. For ex-
ample, some files must be shared by many users, whereas
some are only available locally on read-only media; some
files must be encrypted; and some can be efficiently com-
pressed. At the same time, every possible storage sub-
component, such as a disk or a remote server, has a set of
unique features. Therefore, an ideal storage-virtualization
system must support most physical and logical storage de-
vices, as well as support various per-file data placement

policies and per-file special features such as compression
and encryption.

Hardware-virtualization systems are limited to specific
types of lower storage devices. Driver-level storage virtual-
ization systems support more device types, but the number
of local and SAN device types is still limited. Device-level
and driver-level storage virtualization systems, such as hard-
ware and software RAID [34], operate on raw data blocks
without knowledge of meta-data. This means that they use
the same storage policies for all files. At most, they try to
use statistical information about data accesses in an attempt
to increase performance [47]. This also means that informa-
tion on individual disks in an array has no meaning and little
or no information can be extracted if too many disks fail.

File-system—level storage virtualization systems still sup-
port only limited types of storage; many support just one.
This is because they have to explicitly support specific NAS
and other protocols as well as special features such as com-
pression and encryption.

Stackable file systems are a useful and well-known tech-
nique for adding functionality to existing file systems [53,
54]. They allow incremental addition of features and can
be dynamically loaded as external kernel modules. Stack-
able file systems overlay another lower file system, inter-
cept file system events and data bound from user processes
to the lower file system, and in turn use the lower file sys-
tem’s operations and data. Most stackable file systems in the
past have assumed a simple one-to-one mapping: the stack-
able file system was layered on top of one lower directory
on a single file system. A different class of stackable file
systems that use a one-to-many mapping (fan-out) has pre-
viously been suggested [16, 38] and was recently developed
from the FiST [48] templates.

We have developed a fan-out RAID-like stackable file
system called Redundant Array of Independent Filesystems
(RAIF). RAIF is a storage-virtualization system that im-
poses virtually no restrictions on the underlying stores and
allows versatile per-file and per-directory storage policies.
RAIF derives its usefulness from three main features: flexi-
bility of configuration, access to high-level information, and
easier administration.

First, because RAIF is stackable, it can be mounted over
directories and, thus, over any combination of lower file sys-
tems. For example, it can be mounted over network file sys-

tems like NFS and Samba, AFS distributed file systems, and
local file systems—all at the same time. RAIF leverages the
well-maintained code and protocols of existing file systems.
In fact, RAIF can even utilize future file systems and proto-
cols. Stackable file systems can be mounted on top of each
other. Existing stackable file systems offer features like en-
cryption [50], data-integrity verification [27], virus check-
ing [32], versioning [33], tracing [3], and compression [51].
These file systems can be mounted over RAIF as well as
below it.

Second, because RAIF operates at the file system level,
it has access to high-level file system meta-data that is
not available to traditional block-level storage virtualization
systems. This meta-data allows the optimization of redun-
dancy schemes, data placement, and read-ahead algorithms.
For example, RAIF can stripe large multimedia files across
different branches for performance, and concurrently use
two parity pages for important financial data files that must
survive even two failures. Dynamic RAIF-level migration
allows one to optimize RAIF reliability, resource utilization,
and performance.

Third, administration is easier because files are stored on
unmodified lower-level file systems. Therefore, the size of
these lower file systems can be changed, and they can be
backed up easily using standard software. The data is easier
to recover in the case of failure because it is stored in files
with the same names as their upper-level counterparts. For
example, if the files are replicated on several disks, then ev-
ery such disk will contain an ordinary file system with the
same files intact.

A common limitation of software RAIDs is that data re-
covery is slow and may require a restart from the very be-
ginning if it is interrupted. RAIF performs storage recovery
on a per-file basis and can even do it in the background, con-
currently with normal activity. If irreparable inconsistencies
are detected, RAIF can identify the specific files affected,
which is more user-friendly than the lists of block numbers
offered by block-level systems.

Like other data striping and replication systems, RAIF
can improve performance for multi-process workloads.
Even for I/O-intensive single-process workloads that re-
quire many synchronous operations, RAIF’s performance is
comparable with the performance of driver-level software
RAID systems. For RAIF configurations similar to standard
RAID4 and RAIDS, RAIF can outperform driver-level and
even some hardware implementations thanks to better con-
trol over file system caches. Moreover, most other storage-
virtualization systems choose a single data-placement pol-
icy, which is not optimal for all files. RAIF can optimize
performance for all files because it can use better data-
placement policies for individual files or groups of files.

The rest of the paper is organized as follows. Section 2
outlines the design of RAIF. Section 3 describes some inter-

esting implementation details. Section 4 presents an evalua-
tion of RAIF. Section 5 discusses related work. We conclude
and outline future directions in Section 6.

2 Design

Existing storage-virtualization systems are limited in three
ways: (1) they only virtualize a limited class of storage de-
vices; (2) they support one or a small number of data place-
ment policies, such as replication on a subset of lower stor-
age devices or striping with parity; and (3) they provide
few (usually no) per-file data management features such as
compression, consistency validation, or encryption. Even
so, existing storage-virtualization systems are complex, ex-
pensive, and hard to maintain. This is because traditional
storage-virtualization systems must explicitly support differ-
ent types of lower storage types and features.

Stackable file systems are a technique for layering new
functionality on top of existing file systems. As seen in
Figure 1, a stackable file system’s methods are called by
the Virtual File System (VFS) as with other file systems,
but in turn it uses another file system instead of perform-
ing operations on a backing store such as a disk or an NFS
server [35,53]. Before calling the lower-level file system’s
methods, a stackable file system can modify the operation
or the data. Stackable file systems behave like normal file
systems from the perspective of the VFS; from the perspec-
tive of the underlying file system, they behave like the VFS.
Fan-out stackable file systems differ from linear stackable
file systems in that they call multiple underlying file sys-
tems, or branches.

~
VL
User Process S

rename ()

vis_rename ()

Virtual File System (VFS) E
wrapfs_rename () é:
R

ext2_rename()

Figure 1: Linear file system stacking

Redundant Array of Independent Filesystems (RAIF) is
a stackable fan-out file system. We designed it with flexi-
bility in mind. RAIF can be mounted over any set of file
systems. This means that it does not have to support all pos-
sible storage types and protocols explicitly: it can leverage
the code of dozens of existing file systems and NAS proto-
cols. RAIF will even be able to reuse future file systems and
protocols without modification. If necessary, RAIF can still
be mounted over standard RAID arrays or any other storage-

virtualization system. In addition, existing and future stack-
able file systems can be mounted above RAIF or over any
lower branches. This allows one to add important extra fea-
tures such as compression or encryption in a selective way.
Figure 2 shows an example RAIF file system mounted over
several different types of lower storage. In this figure, letters
below RAIF denote the branch labels as follows:

C A read-only CD-ROM file system.

E A set of Ext3 file systems mounted over local disks.

V A versioning stackable file system mounted over an
NES client.

N An encryption stackable file system mounted over an
NES client. All data stored on this remote branch is
automatically encrypted.

G A TmpFS Linux file system that stores data in virtual
memory or in the swap area. Because virtual memory
may be scarce, the branch data is compressed with a
stackable compression file system.

~
V
User Process S

rename ()

vis_rename ()

Virtual File System (VFS)

avfs_rename ()

raif_rename ()

(RAIF
C E. \'% N G

_/ Kernel

@ersi‘;nFS) (NCr;ptFS) (Gzi;;'FS)

LT
frossed) (B3 7)) (s)
T

CD-ROM Local Disks

LAN Memory/Swap

Figure 2: A possible combination of RAIF fan-out
stacking and other file systems stacked linearly.
Letters below RAIF denote the branch labels.

2.1 RAIF Data Placement

RAIF is designed at a high level of abstraction and leverages
well-maintained, external code. Therefore, we were able to
concentrate on storage virtualization issues rather than sup-
port for different types of lower storage devices, placement
of individual blocks on these devices, and NAS or SAN pro-
tocols. RAIF duplicates the directory structure on all of
the lower branches. The data files are stored using differ-

ent RAIF modes that we call levels, analogous to standard
RAID levels:

o RAIFO0 The file is striped over a set of lower file sys-
tems. The striping unit may be different for different
files. As we describe below, this level also allows us to
distribute entire files across branches.

o RAIF1 The file is replicated over a set of branches.
Note that we define RAIF1 slightly differently from the
original RAID level 1 [34]. The original RAID level 1
definition corresponds to RAIFO1.

o RAIF4 The file is striped as in RAIFO but a dedicated
branch is used for parity. This level is useful for het-
erogeneous sets of branches, for example if the parity
branch is much faster than the others and the workload
has many writes, or if the parity branch is much slower
and the workload is read-biased.

o RAIFS This level is similar to RAIF4, but the parity is
rotated through different branches.

o RAIF6 In RAIF6, extra parity branches are used to re-
cover from two or more simultaneous failures.

e RAIFO01 This level is a mirrored RAIFO array.

e RAIF10 Similarly to RAIFO1, a mirrored array is
striped over a set of branches.

Small files may occupy only a portion of a single stripe.
To distribute space utilization and accesses among branches,
we start the stripes of different files on different branches.
We use the term starting branch to denote the branch where
the file’s first data page is located. By default, the starting
branch is derived from the file name using a hash function.
Also, users may specify starting branches explicitly.

Another use of the starting branch is to randomize the
data placement of entire files. In particular, one may use
RAIFO with a large striping unit size. In this case, ev-
ery small file will be entirely placed on its starting branch
whereas large files will be striped. For RAIF levels 4, 5,
and 6, small files will be stored on their starting branches
and their parity will be stored on parity branches. Essen-
tially, small files will be automatically replicated on two or
three branches whereas large files will be striped. Also, it
is possible to specify a special striping width value (1) to
force files to be stored on their starting branch independently
of their size. This is useful to replicate data on two ran-
dom branches (level 5) or one random and one or two fixed
branches (levels 4 and 6).

RAIF can assign levels and striping unit sizes to files and
directories individually, or by applying regular expressions
to file names. For example, if users’ home directories are
to be stored on a RAIF mounted over a set of branches as
shown in Figure 2, one may use the following global rules:

e Use RAIF1 to replicate ».c, x.h, *.doc, and other
important files on all local drives (branches Eg...Exn)
and branch V. This way, important files are replicated

locally, stored remotely, and also stored with versions
at the same time.

e Use RAIF4 to stripe large multimedia files on all local
drives and keep parity data on the remote NFS server
(branch N). This allows us to save precious space on
the local drives and still keep parity to recover files in
case of a single disk failure. Note that multimedia files
are usually not changed frequently. Therefore, the re-
mote server is seldom contacted for common read op-
erations.

e Use branch G for intermediate files (e.g., x.0). This
way these files are available for repeated compilations
but are purged if not used for a while.

e Use RAIF1 over branches C and G to provide the il-
lusion of writing to a read-only file system. As we
will describe in Section 2.3, RAIF provides a simpli-
fied unification functionality [48]. For example, if a
CD-ROM contains source code, one may compile it
directly from the CD-ROM. Resulting files will be put
onto the G branch and users will see a merged set of
files in a single directory.

e Use RAIFO or RAIF5 on the E branches for all other
files as they are either regenerable or unimportant.

In addition, individual users may be allowed to define
special rules on a per-file or per-directory basis.

2.2 RAIF Rules

The meta-information about every file includes the file’s
starting branch, RAIF level, striping unit, and the set of
branches used to store the file. Since the file name is the
only information available for a file LOOKUP operation,
RAIF needs to maintain a mapping of file names to meta-
information to perform LOOKUP operations.

In an early RAIF prototype [23], we used a hash function
to find the branch with per-file meta-information. However,
this approach is not suitable for a storage-virtualization sys-
tem in which any subset of branches can be used to store
a file: RAIF needs to know the file storage configuration
in order to determine the subset of branches used to store
the file. RAIF’s meta-information storage is based on two
assumptions: first, we assume that RAIF meta-information
does not change frequently; second, we assume that the
number of storage policies is much smaller than the num-
ber of files. Therefore, every storage policy is associated
with a regular expression to match file names. A regular
expression, a RAIF level, a striping unit size, and a set of
branches together define a RAIF rule. A 1ookup, then, con-
sists of matching a file name with a rule and looking up the
file in the returned set of branches. Rules are stored in spe-
cial files on a subset of lower branches. These files are not
visible from above RAIF and are read at directory lookup
time. This approach allows RAIF to decrease both system
time and I/O overheads. Directories with no rules contain

no rule files, which is the common case. Also, storing rule
files close to the files they relate to increases data locality on
the lower branches and thus improves performance. RAIF
supports the following three types of rules:

e Global rules are inherited by lower directories. They
can be added or removed only manually.

o Local rules are not inherited by lower directories and
have higher priority than global rules. Generally, these
rules are necessary for exception handling. For exam-
ple, they can be used to define special policies for an
individual file. However, the most common use of local
rules is to handle RENAME and rule-change operations,
as we will describe in Section 2.2.2.

e Meta rules specify policies for storing RAIF rule files.
This way, these special rule files can be replicated on
all or only a subset of branches to balance reliability
and performance. Also, meta rules are useful if some
branches are mounted read-only. Finally, this allows
one to dedicate branches for storing RAIF rules. For
example, such branches can be networked file systems
to allow sharing of the rules between servers. Dedi-
cated branches are thus similar to dedicated meta-data
servers in cluster storage systems [1]. Regular expres-
sions in meta rules are matched only against lower di-
rectory names.

Let us again consider the example RAIF configuration
shown in Figure 2, and assume that we want to store a small
directory tree as shown in Figure 3. As we discussed in Sec-
tion 2.1, we may want to have a global rule for the topmost
directory, raif, to stripe all multimedia files on the local
hard disks and keep their parity on a remote branch (RAIF4
configuration). However, one may want to add a special lo-
cal rule to the dir1 directory to replicate birth.avi onall
the local drives and a remote server because that file con-
tains especially precious data.

2.2.1 Rule Matching

Upon a file LOOKUP operation, RAIF matches the file name
against the regular expressions in all relevant rule files.
Rules in every directory are arranged sequentially accord-
ing to their priority. Local rules have the highest priority
and are tried first. Global rules in every directory have
precedence over global rules of the parent directory. This
way, every rule has a unique priority value. Therefore, the
rule-matching process proceeds by scanning the rules se-
quentially, starting from the highest-priority local rule in the
current directory and finishing at the lowest-priority global
rule from the RAIF mount-point directory. Because we as-
sume that rules are not changed frequently, RAIF can use
finite-state machines (e.g., using the Aho-Corasick pattern-
matching algorithm [2]) to avoid sequential scanning.

Let us now consider the LOOKUP operation in more de-
tail. First, RAIF matches the file name against all relevant

’ top.avi ‘[dir1 j[dir2

)
I

‘ ’ party.avi ‘

| birth.avi| | bday.avi|| atxt

Figure 3: A sample directory tree.

rules using the finite automaton for the current directory.
Out of the returned set of rules, RAIF selects the highest-
priority rule and looks up the file on one of the branches
according to that rule. After this LOOKUP operation, RAIF
knows if the lower file exists and if it is a regular file or a
directory. If the file exists, RAIF looks up the rest of the
branches. In case of a directory LOOKUP, RAIF reads and
parses its rules if they exist. If the file being looked up does
not exist, RAIF returns from the LOOKUP operation. The
rest of the branches are looked up later, upon calls to file
or directory CREATE functions, because this is the earliest
opportunity for RAIF to know the type of these files. This
allows RAIF to minimize the number of LOOKUP calls sent
to the lower file systems.

2.2.2 Rule Management

Rules for groups of files allow RAIF to perform with min-
imal overheads for common file system operations because
only a minimal amount of extra meta-information requires
maintenance in memory and on the lower branches. This is
possible because RAIF rules are kept intact most of the time.
Let us consider the three situations in which rule changes are
required.

Rename operations change the name of the file. Therefore,
the rule that matches a file may be different before and af-
ter it is renamed. Note that this is not likely because most
renames do not change the logical meaning of the file be-
ing renamed. For example, it is unlikely that the source file
main.c would be renamed to a video file main.avi. How-
ever, the location of the starting branch may change even in
the common case, which is important if the file is striped.
Therefore, if the old storage policy does not correspond to
the new file name, RAIF has two options: (1) add a local
rule for the new file (the regular expression field is the ac-
tual new file name), or (2) store the file according to its new
name. RAIF adds a local rule for large files and moves the
data for small files. The file-size threshold is configurable.
Upon an UNLINK operation of a file, the corresponding local
rule is deleted if it exists.

Moving a directory may require an update of the rules for
that directory. For example, Figure 4 shows the directory
tree of Figure 3 with directory dir2 moved into dirl. We

/raif

:

| top.avi | (dirt

<

| birth.avi|| bday.avi | dir2

£

)
I

‘ ’ party.avi ‘

| axt

Figure 4: Same directory tree with dir2 moved in-
side dir1.

can see that if dirl has any rules, then these rules could
conflict with the placement of the files in the old dir2. In
that case, RAIF would add the necessary global rules to
dir2. Note that the number of rules to add is usually small.
In the worst case, the global rules from the directories above
may require an addition to a single directory.

Manual addition, removal, and modification of rules by
users is not a frequent operation. However, it may result in
conflicts if existing files match the new rule and the new rule
does not correspond to the old storage policy. Again, RAIF
offers two possible options: (1) moving the files’ data; and
(2) adding local rules for affected files. The first option may
be useful for storage reconfiguration. Rule changes usually
correspond to administrators’ desire to modify the storage
configuration. For example, an administrator may want to
increase the storage capacity and add another local disk to
the RAIF configuration shown in Figure 2. In that case,
administrators will change the existing rule to stripe data
across more branches, and may want to migrate the data for
all existing files as well. The second option, adding local
rules, corresponds to the standard technique of lazy storage
migration. In particular, new files will be stored according
to the new rules whereas old files will be gradually migrated
if deleted or completely overwritten.

Rename and directory-movement operations both require
changes to rules or files in only one directory. Rule addi-
tions, removals, and modifications may require recursive op-
erations and are therefore performed partially in user mode.
In particular, a user-level utility traverses the directory tree
bottom-up and gradually updates it by calling the kernel-
level directory rule-update routines. Per-directory updates
are not recursive, and RAIF performs them in the kernel to
avoid races. As an example rule-update scenario, consider
the directory tree shown in Figure 3. Let us assume that we
want to add a global rule to directory raif with the regular
expression a . txt. First, the user-level program for rule ad-
dition will issue an ioct1 call to ask the kernel component
to add the rule to directory dir1l. Because that directory has
no files that match the regular expression a . txt, RAIF will
just add that global rule to dirl and return. Second, the
user-level program will do the same for dir2, which has a

file that matches the new regular expression. Depending on
the file size or additional program flags, RAIF either adds
a local rule for that file or moves its data. (Storage poli-
cies must be changed only in that case.) If RAIF moves the
data, it first creates local rules for every matched file in a
directory to ensure that the files’ data is always consistent
with the rules. Only after doing this, RAIF removes these
temporary local rules, adds a new global rule to dir2, and
returns. Third, the user-level program calls RAIF to add a
rule to directory raif. Finally, RAIF adds the global rule
to raif and removes the temporary global rules from dirl
and dir2.

2.3 Merging and Unification Semantics

RATIF levels that stripe the files can be used to merge several
small file systems together to form a single, larger file sys-
tem. Similar to Chunkfs [19], such merging decreases the
total consistency checking time. RAIF can merge any num-
ber of file systems without having to modify their source
code or on-disk data layouts. RAIF can also store parity
locally or remotely to increase data reliability.

RAIF’s design ensures that files stored on several
branches are visible as a unified name-space from above.
This allows RAIF to join several file systems together simi-
lar to Unionfs [48]. Thus, one can run programs that require
read-write access to the directory structure from a read-only
CD-ROM or a DVD-ROM. For example, one may create
rules to store rule files and all the new files on the writable
branches only. This way, one can compile programs from
read-only media directly, or temporarily store useful files on
RAM-based file systems.

2.4 RAIF Administration

RAIF’s rule-changing process is useful in many cases, such
as when adding or removing RAIF branches, or when in-
creasing or decreasing available storage space. However,
the rule-changing process may be lengthy so it is wise to
estimate the storage space changes beforehand. RAIF has
user-level utilities for this purpose.

RAIF has a user-level Perl script that accepts high-level
descriptions of file types and information about the relative
importance of files. This script can change rules and even
migrate data to increase or decrease storage space utiliza-
tion given this information. For example, an administrator
could use the script to free N gigabytes of space when nec-
essary [55]. This script can perform automatic storage re-
configuration if periodically started by a cron job. For ex-
ample, RAIF can store all files with replication while space
is plentiful but gradually change the reliability of data up to
the lowest allowed level as space becomes scarce.

Also, user-mode tools can initiate delayed conversion of
file storage policies. For example, RAIF can create local
rules for files affected by renaming or rule-changing opera-

tions during high system load times. Later, the cron dae-
mon can initiate conversion of these files during periods in
which the system is underutilized.

This design allows RAIF to be simple in the kernel and
operate with clear and deterministic rules. At the same time,
more sophisticated and abstract policies can be processed
and defined at the user level.

2.4.1 RAIF Backup and Security

RAIF stores files on lower file systems as regular files. This
provides three main benefits. First, it allows incremental
backups on a per-branch basis. These backups can be re-
stored on individual failed branches. Second, RAIF files
have the same owners and attributes as their counterparts
on lower branches. Similarly, rule files have the same own-
ers and access permissions as their parent directories. This
means that users not allowed to write to a directory are not
allowed to create rules in that directory because they cannot
create rule files there. Third, administrators can set up quo-
tas for the lower file systems and control the usage of these
individual branches. This could be used to discourage users
from setting up rules to replicate all their files.

2.5 Performance

RAIF is a file system, and as such is located above file
system caches. Therefore, it can efficiently use all avail-
able memory for data and meta-data caching. For example,
both data and parity are automatically cached in the page
cache [13]. This allows RAIF to outperform driver-level and
even some hardware RAID controllers (with small caches)
under a write-oriented workload.

RAIF takes advantage of its access to high level infor-
mation to perform per-file performance optimizations. For
example, it only calculates parity for newly-written infor-
mation. Block-level RAID systems do not have sufficient
information and have to calculate parity for whole pages or
blocks. Worse yet, they have to read the old parity even for
small file appends.

Standard read-ahead algorithms on layered storage sys-
tems can be not just suboptimal but can even degrade per-
formance [43]. RAIF can optimize its read-ahead policies
for different RAIF levels and even files.

2.5.1 Load-Balancing

RAIF imposes virtually no limitations on the file systems
that form the lower-level branches. Therefore, the proper-
ties of these lower branches may differ substantially. To deal
with this, RAIF supports homogeneous and heterogeneous
storage policies. For example, RAIF4 assumes that a ded-
icated parity branch is different from the others, whereas
RAIF5 assumes that all lower-level branches are similar.
Starting-branch selection can be randomized to balance load
for all branches or fixed to one branch to force small files be

placed on that branch.

To optimize read performance, we integrated a dynamic
load-balancing mechanism into RAIF1. The expected de-
lay or waiting time is often advocated as an appropriate
load metric [39] for heterogeneous configurations. The per-
branch delay estimate is calculated by exponentially averag-
ing the latencies of page and meta-data operations on each
individual branch. A good delay estimate can track last-
ing trends in file system load, without getting swayed by
transient fluctuations. We ensure this by maintaining an
exponentially-decaying average and a deviation estimate.

Proportional share load-balancing distributes read re-
quests to underlying file system branches in inverse propor-
tion to their current delay estimates. This way, it seeks to
minimize expected delay and maximize overall throughput.
To implement this, RAIF first converts delay estimates from
each underlying branch into per-branch weights, which are
inversely related to the respective delay estimates. A kernel
thread periodically updates a randomized array of branch
indexes where each branch is represented in proportion to
its weight. As RAIF cycles through the array, each branch
receives its proportional share of operations.

2.6 Reliability

If one or several branches fail, RAIF can either operate in a
degraded mode or recover the data on-line or off-line.
On-line recovery is performed similarly to the rule-
management procedures. That is, a user-mode program re-
cursively traverses directories bottom-up and invokes the
kernel-mode per-directory recovery procedure. During a
file’s recovery, RAIF either migrates the file’s storage policy
to store the file on fewer branches or regenerates missing in-
formation into a new branch. During this recovery process,
RAIF can serve requests and recover missing data pages on
demand.
Off-line recovery is performed by a user-level fsck pro-
gram. The program accesses the lower branches directly and
generates the data on the replacement branch. The program
can also recover individual files if necessary.

In both cases, RAIF reports files that cannot be recov-
ered instead of less meaningful block numbers as reported
by block-level RAIDs.

2.6.1 Resynchronization

A notorious problem of most software and hardware RAID
systems that do not use non-volatile memory is the write
hole problem. In particular, concurrent writes (i.e., writes
of the same information to several branches for RAIDI or
writing of data and associated parity in the case of RAIFS)
reach permanent storage in an undefined order unless per-
formed synchronously and sequentially. Synchronous se-
quential writes significantly degrade performance and are
not used in practice. Unordered writes may result in an in-

consistent state after a power failure if, say, a parity block is
written to the disk but the associated data update is not.

RAIF creates a hidden file called .raif_status in ev-
ery branch when RAIF is mounted and removes that file
on unmount. This file is not exposed to users. This al-
lows RAIF to identify power-failures or other events that
can potentially result in data inconsistencies by checking for
the existence of that file during the RAIF mount operation.
If the .raif_status file is detected, RAIF starts the data
resynchronization process in the background. It recalculates
parity for all files and, for RAIF1 it makes the data on all the
branches identical. This procedure guarantees that, after it
is complete, the data and the parity on all the branches are
consistent. However, (similar to other software RAIDs) it
does not guarantee that the latest write completely or par-
tially succeeds.

Like rule management, per-directory resynchronization is
performed in the kernel whereas recursive operations are
performed by our user-level tool. During the resynchroniza-
tion process, RAIF works as usual except that all operations
result in resynchronization of the requested data and meta-
data if they are not yet resynchronized. On-line resynchro-
nization is possible because RAIF is mounted over lower
file systems which are already in a consistent state by the
time RAIF is mounted. For example, journals on lower file
systems are used by their respective journalling file systems
to restore a consistent state. The .raif_status file is not
removed on unmount if the RAIF self-verification is not fin-
ished. The .raif_status file contains the current RAIF
verification position. This allows RAIF to continue its self
verification the next time it is mounted, or restart it in case
of another power failure.

RAIF performs the verification on-line because it oper-
ates over other consistent-state file systems. In practice, this
is a useful property, given that self-verification can take days
or even longer for large arrays [10].

2.6.2 Reliability of RAIF vs. RAID

One of the major differences between RAIF and lower-level
(driver or hardware) RAID systems is that RAIF operates
above file system caches. One may think that this delays
writes in memory and results in lower reliability. How-
ever, existing file systems mounted over RAID systems de-
lay writes the same way before the RAID is called to write
the information. Therefore, in both cases writes are delayed
the same way, if one considers the whole file system stack.
Simultaneous power failure and a branch failure may re-
sults in silent data corruption [4] for parity-based redun-
dancy schemes. For this to happen (1) a parity write must
succeed; (2) the data write must fail; and (3) some other
branch that is used to store this file must fail. In that case,
the parity does not correspond to the data any more and
will produce invalid data if used to recover the data on the

failed branch. Similarly, as described above, big writes (if
interrupted) may result in the situation when some blocks
of a file contain previous information and some new. These
problems exist for most driver-level RAID systems and even
hardware RAID controllers not equipped with non-volatile
memory. Nevertheless, such RAID controllers are widely
used because these problems do not happen too often.

Out of several existing solutions for the problem, jour-
nalling of data and meta-data writes in a non-volatile mem-
ory card is most suitable for RAIF. It does not require major
architectural changes compared to say, ZFS’s whole stripe
writes in RAID-Z [45]. Also, the addition of a journal can
dramatically decrease RAIF resynchronization times [10].

3 Implementation

Generally, RAIF can be implemented for most OSs that
support stacking [53]. We implemented RAIF as a load-
able Linux kernel module that can be compiled for both
Linux 2.4 and Linux 2.6. RAIF reuses the code of other file
systems. As a result, its entire source consists of only 8,375
lines of C code. This is roughly three times smaller than the
Linux RAID driver’s source code. The RAIF structure is
modular so that new RAIF levels, as well as parity and load
balancing algorithms, can be added without any significant
changes to the main code.

3.1 RAIF6

Our RAIF6 implementation uses the Row-Diagonal Parity
Algorithm (RDP) [7] which protects against double disk
failures. The RDP algorithm is computationally less inten-
sive than most other ECC algorithms. It stores data in the
clear and uses only XOR operations to compute parity. Each
data block belongs to one row-parity set and one diagonal-
parity set. Because of this, RAIF sometimes has to read
multiple stripes when writing data.

3.2 Single vs. Double Buffering

RAIF must meet exacting performance and scalability re-
quirements. We changed the common stackable file system
templates accordingly.

Stackable file systems create and maintain their own ver-
sions of file system objects. For example, Figure 5 shows
Linux kernel data structures representing an open file on
RAIF mounted over three lower branches. Among other
things, the file structure () encapsulates per-process cur-
rent file position (users can set it with the 11seek system
call). RAIF creates its file structure when a file is opened;
lower file systems create their own versions of file struc-
tures. RAIF’s file structure keeps pointers to these lower
file structures. Similarly, RAIF and lower file systems have
their own directory entry structures (D), inode structures (I)
that among other things keep file size information, address
spaces (a), and cached data pages (P). This way, every ob-

Figure 5: Kernel data structure duplication for ev-
ery open file. RAIF structures are shown on the
top with three lower file systems below. Arrows
show important pointers between the structures.
F, D, I, A, and p are the file, directory entry, inode,
address space, and the memory page structures
respectively.

ject stores the information specific for that file system’s ob-
ject. For example, if a file is striped using RAIF level 0, its
file size (stored in the inode structure) is a sum of the sizes
stored in the lower branches’ inode structures.

Most of these file system structures are small and do
not add significant memory overheads. However, the page
structures are usually mapped one-to-one with the associ-
ated memory pages. Therefore, stackable file systems on
Linux duplicate the data. This allows them to keep both
modified (e.g., encrypted or compressed) data on lower
file systems and unmodified (e.g., unencrypted or uncom-
pressed) data in memory at the same time and thus save
considerable amounts of CPU time. However, stackable
file systems that do not modify data suffer from double data
caching on Linux [22]. For them, double caching does not
provide any benefits but makes the page cache size effec-
tively a fraction of its original size. For linear stackable file
systems it divides the available cache size in two [25]. For
RAIF, the reduction factor depends on the RAIF level and
ranges from two for level 0 to the number of lower branches
plus one for level 1. In addition, data is copied from one
layer to the other, unnecessarily consuming CPU resources.

Unfortunately, the VFS architecture imposes constraints
that make sharing data pages between lower and upper lay-
ers complicated. In particular, the data page is a VFS object
that belongs to a particular inode as shown in Figure 5. The
stackable file system developer community is considering
a general solution to this problem [17,22,25,41]. Mean-
while, we have designed several solutions applicable in dif-
ferent situations.

No upper-level caching. Upon a read or a write call,
RAIF does not call the page-based VES operations. In-
stead, it calculates the positions of the data on the lower
branches and calls the read or write methods of the lower
file systems directly. These lower methods copy the data be-
tween the user-level buffer and the lower data pages. There-
fore, the data is never cached at the RAIF level and no data
copying between the layers is necessary. Unfortunately, this

method still requires in-memory data replication for all the
lower branches for RAIF level 1. More importantly, how-
ever, this method does not guarantee cache coherency be-
tween layers if the file is memory-mapped: in that case, the
data is double buffered again. Therefore, we have to disable
this RAIF optimization for memory-mapped files.

Temporary low-level caching. For RAIF level 1 and
memory-mapped files, RAIF allocates cache pages for its
data and copies that data to and from cache pages of the
lower branches. However, RAIF attempts to release these
lower pages as soon as possible. In particular, it marks
lower pages with the PG_reclaim flag every time it issues a
write request on a lower page. Later, upon completion of a
write request, Linux releases such pages automatically. This
way, lower pages are only allocated for a short duration of
the pending write requests’ time. Read requests are satis-
fied from the RAIF page cache directly or forwarded below
for I/0O. This deallocation of the lower pages allowed us to
reduce the running times of RAIF1 mounted over several
lower branches by an order of magnitude under I/O inten-
sive workloads.

3.3 Other Optimizations

Another problem of all Linux fan-out stackable file systems
is the sequential execution of VFS requests. This increases
the latency of VFS operations that require synchronous ac-
cesses to several branches. For example, RAIF deletes files
from all branches sequentially. However, it is important
to understand that, while this increases the latency of cer-
tain file system operations, it has little impact on aggregate
RAIF performance under a workload generated by many
concurrent processes. Several attempts to perform at least
the unlink operations asynchronously on Linux Ext2 and
Ext3 file systems proved that it is difficult in practice [5].

For RAIF levels that stripe data, RAIF delays file create
operations. RAIF initially creates files only on the starting
and parity branches. If the file eventually grows bigger, then
RAIF creates files on the other branches.

During the readdir operation, RAIF merges the lists of
files from different branches. To optimize this operation,
RAIF analyzes the rules in a given directory and derives the
minimal subset of branches that contains all the files. For
example, consider a RAIF configuration with three branches
and two rules: store files matching the pattern «.mpg on
the first two branches and store all other files on the last
two branches. It is sufficient to read the list of files from
the middle branch because all the files stored on RAIF are
also stored on that lower branch. This optimization allows
RAIF to avoid issuing readdir requests for some branches.
The problem of finding the minimal subset of branches that
contains a set of files is NP-complete. Therefore, RAIF uses
heuristics to check for simple and common cases first.

3.4 Rule Representation

All rules visible from the user-level have a unified text-based
representation of the form:
T:P:R:L:U:S:B, where:

T is the rule type, and can be a global rule (G), a local rule
(L), or a meta rule (M);

P is the rule priority relative to other rules of the same

type in the current directory;

is the regular expression (e.g., * .mpg);

is the RAIF level;

is the striping unit size (-1 to store files on the starting

and parity branches only);

S is the starting branch (-1 to use name-hash value);

B is the list of branch names to store files on.

S~ =

For example, if one issues a command to add a rule:

raifctl -d /homes \
add "G:1l:x.mpg:0:-1:-1:E0,E1,E2,N"

then RAIF will write the same rule string to the rule files
on the lower branches. Therefore, user-level tools and cus-
tom scripts can read and parse these files when RAIF is not
mounted.

4 Evaluation

We have evaluated RAIF’s performance using a variety of
configurations and workloads. We conducted our bench-
marks on two 2.8GHz Intel Xeon (2MB cache, 800MHz
bus) machines with 2GB of RAM. The first machine was
equipped with four Maxtor Atlas 15,000 RPM 18.4GB Ul-
tra320 SCSI disks formatted with Ext2. For benchmark-
ing hardware RAID, we replaced the SCSI adapter with an
Adaptec 2120S SCSI RAID card with an Intel 80302 pro-
cessor and 64MB of RAM. We used the second machine
as an NFS client. Both machines ran Red Hat 9 with a
vanilla 2.6.11 Linux kernel and were connected via a dedi-
cated 100Mbps link.

We used the Auto-pilot benchmarking suite [49] to run
all of the benchmarks. The lower-level file systems were
remounted before every benchmark run to purge the page
cache. We ran each test at least ten times and used the
Student-¢ distribution to compute 95% confidence intervals
for the mean elapsed, system, user, and wait times. Wait
time is the elapsed time less CPU time used and consists
mostly of I/0, but process scheduling can also affect it. In
each case the half-widths of the confidence intervals were
less than 5% of the mean.

For the remainder of the evaluation, RAIFL-B refers to
RAIF level L with B branches. Similarly, RAIDL-B refers
to the Linux software RAID driver and HWRAID L- B refers
to hardware RAID. We use EXT?2 to refer to a configuration
with an unmodified Ext2.

4.1 Random-Read

RANDOM-READ is a custom micro-benchmark designed to
evaluate RAIF under a heavy load of random data read op-
erations. It spawns 32 child processes that concurrently read
32,000 randomly located 4,096-byte blocks in a set of files.
We ran this benchmark with RAIFO, RAIF1, and RAIFS5 us-
ing a stripe size of 64KB with up to four Ext2 branches. We
did not include results for RAIF4, because RAIFO with N
branches is the same as RAIF4 with N + 1 branches. In
addition, we did not include results for RAIF6 because they
are similar to RAIFO with dedicated ECC branches, or to
RAIF5 with rotating ECC branches. We compared RAIF
to RAID with similar configurations. Before running the
benchmark, we created eight 2GB files on each of the four
disks. We wrote the files in a round-robin fashion for each
set of eight files, so that each file spanned almost the entire
physical disk. Because the files were created in this way, the
benchmark always spans almost the full size of each disk,
regardless of the number of branches we used.

Figure 6 shows a comparison of RAID and RAIF under
this workload, as well as reference results for Ext2. User
and system times were small and statistically indistinguish-
able for all configurations. Additionally, the elapsed times
for all RAIDO and RAIFO configurations were statistically in-
distinguishable. This is because they use the same number
of disks, and RAIF passes the requests directly to the under-
lying Ext2 branches. As we added more disks to RAIFO, the
I/0O requests were distributed among more disks, and the I/O
time dropped significantly. RAIF1 performed slightly better
than RAID1, except for RAIF1-3, which had a 6.4% over-
head. The performance of RAIFS was slightly worse than
RAIDS, with 4.6% overhead for three branches, and 1.7%
for four branches. Overall, we can conclude that RAIF has
comparable performance to driver-level software RAID for
read workloads.

180 | 1751 1743 1748 174.8 1741
= -

160 |
140 |
120 |

96.3 =] =

100 F 96.0

77.1
80 69.8 70.3 71.8
= 63.7 63.1
59.7 576 59.5

60 -
40 -
20 -
0 N NN N

T3) ITIII I DD

> > > >>2>> >=>2>

)
=
S

Elapsed Time (seconds)

zxa]

VY E—T
]
g

-6alvd
-GdIvd

Figure 6: RANDOM-READ benchmark results using

RAIF0, RAIF1, and RAIF5 with varying numbers of
branches. Ext2 results are shown as a reference.

4.2 Postmark v1.5

Postmark [28] simulates the operation of electronic mail
servers. It performs a series of file appends, reads, creations,
and deletions, showing how RAIF might behave in an I/O-
intensive environment. We chose a Postmark configuration
to stress 1/0: it creates 60,000 files of size between 512—
10K bytes in 600 directories, and performs 600,000 transac-
tions. All operations were selected with equal probability.
Every other Postmark’s operation is either a CREATE or an
UNLINK. Due to VFS restrictions, these RAIF operations
are executed sequentially on lower branches and are CPU-
intensive. This makes Postmark a challenging benchmark
for RAIF.

We ran Postmark for all applicable numbers of branches
under RAIF levels 0, 1, 4, 5, and 6. We compared the re-
sults to both driver-level and hardware RAID implementa-
tions for their respective available RAID levels. Figure 7
shows these results, as well as results for Ext2 for reference.

RAIF0. Aswe can see from Figure 7, RAIFO-2 was 18.6%
slower than RAIDO-2, due to a 59.1% increase in system
time and a 32.4% increase in wait time. The performance
degraded slightly when more branches were added (over-
heads of 25.6% and 20.7% for three and four branches, re-
spectively). This was due to the increased system time as-
sociated with extra branches.

RAIF1. The results for RAIF1 were similar to those for
RAIFO0, with similar increases to system time overhead as
more branches were added. In this case, the elapsed time
overheads were 26.4%, 30.5%, and 29.3% for configura-
tions with 2, 3, and 4 branches, respectively. For RAIF1, we
release cache pages of lower file systems after all write op-
erations. This allowed us to decrease RAIF1-3 and RAIF1-4
overheads by approximately ten times.

RAIF4 and RAIFS5. Whereas the system time of RAIF4
was higher than RAID4, the wait time was significantly
lower, resulting in overall better performance. The system
time of RAIF4-3 was 2.2 times that of RAID4-3, but it had
67.6% less wait time, resulting in a 46.1% improvement.
Similarly, the system time of RAIF4-4 was 2.3 times that of
RAID4-4, but the wait time was reduced by 75.8%, yielding
an overall improvement of 54.0%. We saw similar results
for RAIF5 and RAIDS. For RAIF5-3, system time was 2.1
times that of RAIDS5-3, wait time was 63.8% lower, and there
was an overall improvement of 44.5%. The system time of
RAIF5-4 was 2.4 times that of RAID5-4, the wait time im-
proved by 74.3%, and the elapsed time improved by 53.0%.

To understand this behavior, we profiled EXT2 mounted
over RAID using OSprof [24]. We noticed that the EXT2
WRITEPAGE operation had disproportionally high latency
due to disk head seeks. In particular, the Linux RAID driver
experienced 6,569 long disk head seeks while writing dirty
buffers to the disk. RAIF, on the other hand, waited for

Wait ——1
User <X
[System m—

700
600 [
500

400

300

Elapsed Time (seconds)

200

100

S

Ry Ry Ry Rg Rgl Ay Ry ARy Ry Ry Rg A By ARy Ay Ay Ry Ra A Mg Ran A
o, oy 0, oy oy o, Crg g Py Mrg Hrg Hry Cag ey, Mg e, Doy s, W/?‘q’os h//?’%s Ty "5,
s g

704.7 7.2

666.7
633.3

3412 543

Figure 7: Postmark results for RAIF and RAID with varying levels and numbers of branches. Also shown
are the results for an Adaptec 2120S RAID5 card. Results for Ext2 are shown as a reference.

only 211 long disk head seek operations. This is because
RAIF operates above file system caches and parity pages are
cached as normal data pages. Linux RAID, however, oper-
ates with buffers logically below file system caches. There-
fore, the Linux RAID driver has to read existing parity pages
for most write operations, whereas RAIF has them cached.

We also benchmarked one of the hardware implemen-
tations of RAIDS, and RAIFS was faster than that imple-
mentation as well. Hardware and driver-level implemen-
tations had similar system time overheads. RAIF5-3 had
28.6% less wait time than HWRAIDS5-3, and was 8.3% faster
overall. RAIFS5-4 had 41.5% wait time improvement over
HWRAIDS-3, and the elapsed time improved by 13.3%. This
is because even though the RAID controller card has 64MB
of RAM available for caching parity, RAIF has access to
main memory.

RAIF6. RAIF6-4 (not shown in Figure 7 because of the
large value difference compared to the other bars) performed
70% slower than RAID6-4, with a total elapsed time of
1,183.8 seconds. This shows that our current RAIF6 imple-
mentation requires further optimization for write-oriented
workloads (part of our future work).

In summary, RAIF, like RAID, improves performance of
read-oriented workloads. For writes, RAIF5 performs bet-
ter than a driver-level software RAIDS system and even bet-
ter than a hardware RAIDS system, both of which support
only fixed configurations. Due to improved caching poli-
cies, RAIF caches parity information and can avoid many of
the parity-read requests necessary to update existing parity
pages. Furthermore, CPU speeds are increasing at a much
faster pace than network and disk I/O. Therefore, these re-
sults will become even more significant in the future. Also,
we used one of the fastest hard drives available today. Re-
sults with commodity SCSI or even ATA hard disks would
favor RAIF more.

11

5 Related Work

Block-level RAID. Striping and replication of data pos-
sibly combined with the use of error-correction codes on
homogeneous [34] and heterogeneous [8] configurations of
local hard drives has been commonly used for decades to
improve data survivability and performance. Modern block-
level virtualization systems [21] rely on Storage Area Net-
work (SAN) protocols such as iSCSI to support remote
block devices. The idea of using different RAID levels for
different data access patterns at the block level was used in
several projects at the driver [14] and hardware [47] lev-
els. However, the lack of higher-level information forced
the developers to make decisions based either on statistical
information or semantics of particular file systems [42]. Ex-
posed RAID (ExRAID [9]) reveals information about par-
allelism and failure isolation boundaries, performance, and
failure characteristics to the file systems. Informed Log-
structured file system (I.LES) uses ExXRAID for dynamic
load balancing, user control of file replication, and delayed
replication of files. RAIF already operates at the file system
level and possesses all the meta information it needs to make
intelligent storage optimization decisions [9]. Solaris’s ZFS
is both a driver and a file system [45]. Despite having all
the necessary information, it supports storage policies on a
storage-pool basis only. This means that whole devices and
whole file systems use the same storage policies. RAIF pro-
vides more versatile virtualization on a per-file basis.

File-system-level RAID. Higher level storage virtualiza-
tion systems operate on files [11]. Their clients work as file
systems that send networked requests to the servers [1, 15].
Clients find files on servers using dedicated meta-servers or
hash functions [20]. Ceph and Zebra are distributed file sys-
tems that use per-file RAID levels and striping with par-
ity [15,46]. They have dedicated meta servers to locate
the data. Ursa Minor’s networking protocol supports spe-

cial properties for storage fault handling [1]. Coda’s client
file system is a wrapper over a pseudo-device that directly
communicates with a user-mode caching server [30]. The
server replicates data on other similar servers.

File-system—level storage virtualization systems can sup-
port per-file storage policies. However, they still have fixed
and inflexible architectures. In contrast, RAIF’s stacking ar-
chitecture allows it to utilize the functionality of existing file
systems transparently and to support a variety of configura-
tions without any modifications to file systems’ source code.
Thus, RAIF can use any state-of-the-art and even future file
systems. Also, any changes to the built-in protocols of any
fixed storage virtualization system will require significant
time and effort and may break compatibility between the
storage nodes.

Storage utilization. Storage resizing is handled differ-
ently by different storage-virtualization systems. For exam-
ple, ZFS starts by lazily writing new data to newly added
disks (which are initially free) and old disks [45]. Similarly,
specially designed hash functions can indirectly cause more
data to be written to the newly added disk [20]. This ap-
proach works only if all old data eventually gets overwritten,
which is not the case in many long-term storage systems.
An alternative approach is to migrate the data in the back-
ground [6, 12]. RAIF supports both lazy and background
data migration.

Load balancing. Media-distribution servers use data
striping and replication to distribute the load among
servers [6]. The stripe unit size and the degree of strip-
ing have been shown to influence the performance of these
servers [40]. Replication in RAIF uses proportional-share
load balancing using the expected delay as the load metric.
This approach is generally advocated for heterogeneous sys-
tems [39].

RAID survivability. Remote mirroring is a popular stor-
age disaster recovery solution [29]. In addition to data repli-
cation, distributed RAID systems [44] use m/n redundancy
schemes [37] to minimize the extra storage needs. RAIF can
use a number of remote branches to store remote data copies
or parity.

Two popular solutions to the silent data corruption prob-
lem [4] are journalling [10] (e.g., using non-volatile mem-
ory) and log-structured writes [9,45]. RAIF can support
journalling with no major design changes.

Stackable file systems. RAIF is implemented as a stack-
able file system [52]. Stackable file systems are not
new [53]. Originally introduced in the early "90s [38], stack-
able file systems were proposed to augment the functionality
of existing file systems by transparently mounting a layer
above them. Normal stackable file systems mount on top
of a single lower level file system. Today, existing stackable
file systems provide functionalities like encryption [50], ver-

12

sioning [33], tracing [3], data corruption detection [27], se-
cure deletion [26], and more. Similarly to stacking, it is
also possible to add new functionality to other file systems
directly [26].

A class of stackable file systems known as fan-out file
systems mount on top of more than one file system to pro-
vide useful functionality [16,38]. However, so far the most
common application of fan-out has been unification [18,31,
36, 48]. Unification file systems present users with a merged
view of files stored on several lower file systems. RAIF is a
stackable fan-out file system that can mount on top of sev-
eral underlying file systems (branches) to provide RAID-
like functionality.

6 Conclusions

This paper has three primary contributions: (1) we present a
storage virtualization file system we call RAIF, which sup-
ports many possible compositions of existing and future file
systems; (2) RAIF supports per-file storage policies; and (3)
it offers new possibilities for users and administrators.

1. RAIF is designed at a higher level of abstraction than
other file systems and, in fact, reuses other file systems
without modification. This allows RAIF to remain sim-
ple and maintainable while having the flexibility of
many existing file systems combined. RAIF has gen-
eral support for all NAS and local storage types without
any backend-specific code. Therefore, RAIF not only
supports existing file systems but also support future
file systems and types of storage. In addition, other
stackable file systems can be inserted above RAIF, or
below it (but mounted over several lower branches) to
provide extra features (e.g., encryption, compression,
and versioning).

RAIF currently supports all standard RAID levels
and their advanced versions. We designed RAIF to
be extensible with easy-to-modify parameters and with
modular support for new RAIF levels that determine
the RAIF personality. This makes it easy to add data
placement policies.

2. Usually, files in a data store can be subdivided into
groups with similar purposes, importance, and access
patterns. RAIF supports the notion of rules that allow
storage configuration for every such group of files. A
group can be as small as a single file. These rules can
also be applied for a single directory or a branch of a
file system tree. Additionally, meta-rules allow the use
of RAIF over read-only file systems and the implemen-
tation of rudimentary name-space unification.

3. RAIF eases storage administration significantly be-
cause many administration tasks such as security pol-
icy assignment, data backup and restoration, storage
device replacement, and file system crash recovery can
be performed for individual lower branches. Simple

user-level scripts allow administrators to change data
storage policies, modify storage configurations, and
automatically migrate data.

RAIF’s flexibility does not increase administration
complexity. RAIF allows its administrators to choose
appropriate rules and lower file systems. However, we
anticipate that in most configurations RAIF will have
just a few rules and will be mounted over two or three
types of different file systems.

Performance. RAIF has modest system-time overheads.
Similar to RAID, it improves performance for multi-
threaded workloads. RAIF has better control over the caches
and has access to the high-level meta-information. In spite
of RAIF’s extra functionality, RAIF5 performs better than
a state-of-the-art software block-level RAIDS and even a
hardware RAIDS for some write-oriented workloads. In the
future, RAIF’s relative performance is expected to improve
even more.

Cost-Efficiency. High-end RAID controllers would most
likely outperform RAIF because of their extra caches and
CPUs. However, the extra hardware cost spent on the con-
troller can buy even more commodity memory and CPU
power for the system running RAIF. In that case, the extra
resources will be available for other system activity when
not needed by RAIF.

Future Work. We are working on RAIF journal support
to increase the reliability and decrease the array resynchro-
nization time [10].

We are investigating how to improve RAIF6’s per-
formance, possibly by adding other error-correction
algorithms—as well as supporting RAIF6 with more than
two degrees of redundancy.

We plan to augment RAIF to provide quality-of-service
guarantees; we plan to utilize the fact that RAIF oper-
ates at the file system level and has access to all meta-
information [21].

We plan to port RAIF to other OSs such as FreeBSD,
Solaris, and Windows. This is easier than it might appear
because stackable file systems on many OSs operate in a
similar way [53].

RAIF is released under the GPL at:

ftp://ftp.fsl.cs.sunysb.edu/pub/raif/

Acknowledgments

We would like to acknowledge contributions of Adam David
Alan Martin for help with RAIF level 6, Jeff Sipek for
discussions about the Linux RAID driver, and Charles P.
Wright for his help with the experiments.

This work was partially made possible by NSF CAREER
EIA-0133589 and CCR-0310493 awards and HP/Intel gifts
numbers 87128 and 88415.1.

13

References

(1]

(2]

3

—

[4]

(51

(6]

[7

—

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. Ganger,
J. Hendricks, A. J. Klosterman, M. Mesnier, M. Prasad, B. Salmon,
R. R. Sambasivan, S. Sinnamohideen, J. D. Strunk, E. Thereska,
M. Wachs, and J. J. Wylie. Ursa Minor: Versatile Cluster-based
Storage. In Proc. of the Fourth USENIX Conf. on File and Storage
Technologies, pp. 59-72, San Francisco, CA, December 2005.

A. V. Aho and M. J. Corasick. Efficient string matching: an aid to
bibliographic search. Communications of the ACM, 18(6):333-340,
June 1975.

A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A File Sys-
tem to Trace Them All. In Proc. of the Third USENIX Conf. on
File and Storage Technologies, pp. 129-143, San Francisco, CA,
March/April 2004.

N. Brown. Re: raid5 write performance, November 2005.
http://www.mail-archive.com/linux-raid@vger.kernel.
org/msg02886.html.

M. Cao, T. Y. Tso, B. Pulavarty, S. Bhattacharya, A. Dilger, and
A. Tomas. State of the art: Where we are with the ext3 filesystem.
In Proc. of the Linux Symposium, Ottawa, ON, Canada, July 2005.
C. Chou, L. Golubchik, and J. C. S. Lui. Striping doesn’t scale: How
to achieve scalability for continuous media servers with replication.
In International Conf. on Distributed Computing Systems, pp. 64—
71, Taipei, Taiwan, April 2000.

P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar. Row-Diagonal Parity for Double Disk Failure Cor-
rection. In Proc. of the Third USENIX Conf. on File and Storage
Technologies, pp. 1-14, San Francisco, CA, March/April 2004.

T. Cortes and J. Labarta. Extending Heterogeneity to RAID level
5. In Proc. of the Annual USENIX Technical Conf., pp. 119-132,
Boston, MA, June 2001.

T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Bridging the information gap in storage protocol stacks. In Proc. of
the Annual USENIX Technical Conf., pp. 177-190, Monterey, CA,
June 2002.

T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Journal-guided Resynchronization for Software RAID. In Proc. of
the Fourth USENIX Conf. on File and Storage Technologies, pp. 87—
100, San Francisco, CA, December 2005.

G. A. Gibson, D. F. Nagle, W. Courtright II, N. Lanza, P. Mazaitis,
M. Unangst, and J. Zelenka. NASD Scalable Storage Systems. In
Proc. of the 1999 USENIX Extreme Linux Workshop, Monterey, CA,
June 1999.

T. Gibson. Long-term Unix File System Activity and the Efficacy
of Automatic File Migration. PhD thesis, Department of Computer
Science, University of Maryland Baltimore County, May 1998.

B. S. Gill and D. S. Modha. WOW:Wise Ordering for Writes—
Combining Spatial and Temporal Locality in Non-Volatile Caches.
In Proc. of the Fourth USENIX Conf. on File and Storage Technolo-
gies, pp. 129-142, San Francisco, CA, December 2005.

K. Gopinath, N. Muppalaneni, N. Suresh Kumar, and P. Risbood. A
3-tier RAID storage system with RAID1, RAIDS, and compressed
RAIDS for Linux. In Proc. of the FREENIX Track at the 2000
USENIX Annual Technical Conf., pp. 21-34, San Diego, CA, June
2000.

J. Hartman and J. Ousterhout. The Zebra Striped Network File Sys-
tem. In Proc. of the 14th Symposium on Operating Systems Princi-
ples, pp. 29-43, Asheville, NC, December 1993

J. S. Heidemann and G. J. Popek. File system development
with stackable layers. ACM Transactions on Computer Systems,
12(1):58-89, February 1994.

J. S. Heidemann and G. J. Popek. Performance of cache coherence
in stackable filing. In Proc. of the Fifteenth ACM Symposium on
Operating Systems Principles, pp. 3—6, Copper Mountain Resort,
CO, December 1995.

D. Hendricks. A Filesystem For Software Development. In Proc. of
the USENIX Summer Conf., pp. 333-340, Anaheim, CA, June 1990.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

V. Henson, A. Ven, A. Gud, and Z. Brown. Chunkfs: Using Divide-
and-Conquer to Improve File System Reliability and Repair. In
Proc. of the Second Workshop on Hot Topics in System Dependabil-
ity (HotDep 2006), Seattle, WA, November 2006.

R.J. Honicky and E. Miller. Replication Under Scalable Hashing: A
Family of Algorithms for Scalable Decentralized Data Distribution.
In Proc. of the 18th International Parallel and Distributed Process-
ing Symposium, April 2004.

L. Huang, G. Peng, and T. Chiueh. Multi-dimensional Storage Vir-
tualization. In Proc. of the 2004 ACM SIGMETRICS Conf. on Mea-
surement and Modeling of Computer Systems, pp. 14-24. June 2004.
N. Joukov. Re: [RFC] Support for stackable file systems on top
of nfs, November 2005. http://marc.theaimsgroup.com/?1=
linux-fsdevel&m=113193082115222.

N. Joukov, A. Rai, and E. Zadok. Increasing distributed storage
survivability with a stackable raid-like file system. In Proc. of the
2005 IEEE/ACM Workshop on Cluster Security, in conjunction with
the Fifth IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid (CCGrid 2005), pp. 82-89, Cardift, UK, May 2005
N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok. Op-
erating system profiling via latency analysis. In Proc. of the 7th
Symposium on Operating Systems Design and Implementation, pp.
89-102, Seattle, WA, November 2006. ACM SIGOPS.

N. Joukov, T. Wong, and E. Zadok. Accurate and efficient replay-
ing of file system traces. In Proc. of the Fourth USENIX Conf. on
File and Storage Technologies, pp. 337-350, San Francisco, CA,
December 2005.

N. Joukov and E. Zadok. Adding Secure Deletion to Your Favorite
File System. In Proc. of the third international IEEE Security In
Storage Workshop, pp. 63—70, San Francisco, CA, December 2005.
A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok. I3FS: An In-
Kernel Integrity Checker and Intrusion Detection File System. In
Proc. of the 18th USENIX Large Installation System Administration
Conf., pp. 69-79, Atlanta, GA, November 2004.

J. Katcher. PostMark: A New Filesystem Benchmark. Tech.
Rep. TR3022, Network Appliance, 1997. www.netapp.com/tech_
library/3022.html.

K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes. Design-
ing for disasters. In Proc. of the Third USENIX Conf. on File and
Storage Technologies, pp. 59-72, San Francisco, CA, March/April
2004.

J. J. Kistler and M. Satyanarayanan. Disconnected operation in the
Coda file system. In Proc. of 13th ACM Symposium on Operat-
ing Systems Principles, pp. 213-225, Asilomar Conf. Center, Pacific
Grove, CA, October 1991.

D. G. Korn and E. Krell. A New Dimension for the Unix File Sys-
tem. Software-Practice and Experience, 20(S1):19-34, June 1990.
Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok. Avfs: An On-
Access Anti-Virus File System. In Proc. of the 13th USENIX Secu-
rity Symposium (Security 2004), pp. 73-88, San Diego, CA, August
2004.

K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and E. Zadok. A
Versatile and User-Oriented Versioning File System. In Proc. of the
Third USENIX Conf. on File and Storage Technologies, pp. 115—
128, San Francisco, CA, March/April 2004.

D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays
of inexpensive disks (RAID). In Proc. of the ACM SIGMOD, pp.
109-116, June 1988.

B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and
D. Hitz. NFS version 3 design and implementation. In Proc. of the
Summer USENIX Technical Conf., pp. 137-152, Boston, MA, June
1994.

J. S. Pendry and M. K. McKusick. Union mounts in 4.4BSD-Lite.
In Proc. of the USENIX Technical Conf. on UNIX and Advanced
Computing Systems, pp. 25-33, New Orleans, LA, December 1995.
S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Ku-
biatowicz. Pond: The OceanStore Prototype. In Proc. of the Sec-
ond USENIX Conf. on File and Storage Technologies, pp. 1-14, San
Francisco, CA, March 2003.

14

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

D. S. H. Rosenthal. Evolving the Vnode interface. In Proc. of the
Summer USENIX Technical Conf., pp. 107-118, Anaheim, CA, June
1990.

B. Schnor, S. Petri, R. Oleyniczak, and H. Langendorfer. Schedul-
ing of parallel applications on heterogeneous workstation clusters.
In Proc. of PDCS’96, the ISCA 9th International Conf. on Parallel
and Distributed Computing Systems, pp. 330-337, Dijon, France,
September 1996.

P. Shenoy and H. M. Vin. Efficient striping techniques for variable
bit rate continuous media file servers. Tech. Rep. UM-CS-1998-053,
University of Massachusetts at Amherst, 1998.

J. Sipek, Y. Pericleous, and E. Zadok. Kernel Support for Stack-
able File Systems. In Proc. of the 2007 Ottawa Linux Symposium,
volume 2, pp. 223-227, Ottawa, Canada, June 2007.

M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Improving Storage System Availability with D-
GRAID. In Proc. of the Third USENIX Conf. on File and Storage
Technologies, pp. 15-30, San Francisco, CA, March/April 2004.

L. Stein. Stupid File Systems Are Better. In Proc. of the 10th Work-
shop on Hot Topics in Operating Systems (HotOS X), Santa Fe, NM,
June 2005.

M. Stonebreaker and G. A. Schloss. Distributed raid—a new multi-
ple copy algorithm. In Proc. of the 6th International Conf. on Data
Engineering (ICDE’90), pp. 430-437, February 1990.

Sun Microsystems, Inc. Solaris ZFS file storage solution. Solaris 10
Data Sheets, 2004. www.sun.com/software/solaris/ds/zfs.
Jjsp.

S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn. Ceph: A
Scalable, High-Performance Distributed File System. In Proc. of the
7th Symposium on Operating Systems Design and Implementation,
pp. 307-320, Seattle, WA, November 2006. ACM SIGOPS.

J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP Au-
toRAID Hierarchical Storage System. ACM Transactions on Com-
puter Systems, 14(1):108-136, February 1996.

C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P. Quigley,
E. Zadok, and M. N. Zubair. Versatility and unix semantics
in namespace unification. ACM Transactions on Storage (TOS),
2(1):1-32, February 2006.

C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and E. Zadok.
Auto-pilot: A platform for system software benchmarking. In Proc.
of the Annual USENIX Technical Conf., FREENIX Track, pp. 175—
187, Anaheim, CA, April 2005.

C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A secure
and convenient cryptographic file system. In Proc. of the Annual
USENIX Technical Conf., pp. 197-210, San Antonio, TX, June
2003.

E. Zadok, J. M. Anderson, I. Bidulescu, and J. Nieh. Fast Indexing:
Support for size-changing algorithms in stackable file systems. In
Proc. of the Annual USENIX Technical Conf., pp. 289-304, Boston,
MA, June 2001.

E. Zadok and I. Bidulescu. A stackable file system interface for
Linux. In LinuxExpo Conf. Proc., pp. 141-151, Raleigh, NC, May
1999.

E. Zadok, R. Iyer, N. Joukov, G. Sivathanu, and C. P. Wright. On
incremental file system development. ACM Transactions on Storage
(TOS), 2(2):161-196, May 2006.

E.Zadok and J. Nieh. FiST: A Language for Stackable File Systems.
In Proc. of the Annual USENIX Technical Conf., pp. 55-70, San
Diego, CA, June 2000.

E.Zadok, J. Osborn, A. Shater, C. P. Wright, K. Muniswamy-Reddy,
and J. Nieh. Reducing Storage Management Costs via Informed
User-Based Policies. In Proc. of the 12th NASA Goddard, 21st IEEE
Conf. on Mass Storage Systems and Technologies, pp. 193197, Col-
lege Park, MD, April 2004

