
Linux NFSv4.1 Performance Under a Microscope
Ming Chen,1 Dean Hildebrand,2 Geoff Kuenning,3 Soujanya Shankaranarayana,1

mchen@cs.stonybrook.edu, dhildeb@us.ibm.com, geoff@cs.hmc.edu, soshankarana@cs.stonybrook.edu

Vasily Tarasov,1,2 Arun O. Vasudevan,1 Erez Zadok,1 and Ksenia Zakirova3

{vass, aolappamanna, ezk}@cs.stonybrook.edu, kzakirova@g.hmc.edu
1Stony Brook University, 2IBM Research—Almaden, and 3Harvey Mudd College

FSL Technical Report FSL-14-02

Abstract

NFS is a highly popular method of consolidating file

resources in today’s complex computing environments.

NFSv4.1, the latest version of the NFS protocol, has

improvements in security, maintainability, and perfor-

mance. Before system administrators can take advan-

tage of NFSv4.1 in production systems, we need a good

understanding of its performance. For this purpose, we

present a detail-oriented benchmarking study of Linux’s

implementation of NFSv4.1 using micro-workloads.

The NFSv4.1 servers in the 2.6.32 and 3.12.0 kernels

performed well in most of our experiments. However,

we also observed that Linux’s memory management can

waste up to 80% of NFS I/O throughput. NFS perfor-

mance also suffers from unfair networking behavior that

causes the throughputs of identical NFS clients to differ

by a factor up to 19×. We show that NFS delegations

can boost performance by saving up to 90% of network

traffic, but a delegation conflict can cause a delay of at

least 100ms—more than 500× the RTT of our network.

We also found that NFS can exhibit counterintuitive per-

formance behavior due to its intricate interactions with

networking and with journaling in local file systems.

Tags: benchmarking, file system, NFS, performance

analysis, storage systems.

1 Introduction

NFS has a 30-year-long history. The first publicized ver-

sion of NFS was NFSv2 [44]; since then, two more ma-

jor versions (NFSv3 [4] and NFSv4 [41]) and one minor

version (NFSv4.1 [40]) have evolved. NFS is an unusu-

ally popular network-storage solution; even in 1997 it

was estimated that there were 10–12 million NFS clients

globally [25] and the number has surely increased since

then [45]. Faster networks, the proliferation of virtual-

ization, and the rise of cloud computing all contribute

to continued increases in NFS deployments. NFSv4’s

improvements in security, scalability, cross-OS interop-

erability, and performance (e.g., pNFS) will further in-

crease its popularity.

NFSv2 and NFSv3 are stateless, enabling a simple

server implementation and easy crash recovery. NFSv2

used UDP; NFSv3 added TCP support, 64-bit file sizes

and offsets, asynchronous COMMITs, and improved per-

formance using specialized calls such as READDIRPLUS.

The stateless nature of NFSv2 and NFSv3 means

that they depend on auxiliary RPC protocols for state-

involved tasks such as mounting, locking, quota man-

agement, etc. Historically, these auxiliary protocols

were implemented as stand-alone services working on

separate ports. This made NFS difficult to use in WANs

as it requires system administrators to configure all the

port numbers properly to pass through firewalls. NFSv2

and NFSv3 also lack strong authentication and security

mechanisms.

To solve the above problems, NFSv4, a completely

new generation of NFS, was ratified as an Internet stan-

dard in 2003 [41]. Important changes made by NFSv4

include: (1) NFSv4 is stateful. (2) It does not use

auxiliary protocols and incorporates all services into a

single network port. (3) NFSv4 mandates a security

model based on the RPCSEC GSS [10]. (4) It en-

ables advanced and aggressive caching using delegation.

(5) Cross-OS interoperability is improved. (6) Seven

years after NFSv4, NFSv4.1 introduced Sessions to pro-

vide exactly-once semantics and pNFS to allow direct

client access to multiple data servers [11, 24, 40].

NFSv4 also offers new features for improving per-

formance, such as (1) delegations, which enable the

control of a file or directory to be passed to client(s);

(2) operation coalescing via COMPOUND procedures;

and (3) multi-component lookup to reduce the number

of network messages.

NFSv4.1 has been “ready” [15,31] for prime time de-

ployment for a couple of years. However, as it is still

new and complex, it is less understood than older ver-

sions. Before adopting it in production environments,

it is important to understand how it behaves in realistic

environments. We believe that completely new evalua-

tions are necessary to make system administrators well-

informed before migrating systems to NFSv4.1. We

chose to evaluate NFSv4.1 rather than NFSv4.0 because

we believe that it meaningfully alters client-server com-

munication as compared to NFSv4.0 and that it will

eventually replace NFSv4.0 in production environments.

As the first step of a comprehensive evaluation of

NFSv4.1, we benchmarked the Linux NFSv4.1 imple-

mentation using a variety of micro-workloads. We be-

1

gin our study with benchmarking micro-workloads in a

simple setup in the belief that understanding NFSv4.1

in simple workloads and environment is the foundation

of understanding it in complex workloads and environ-

ment. Our in-depth analysis of the micro-workload re-

sults reveals that NFS’s performance depends heavily

on its interactions with many other system components

such as memory management, networking, and local file

systems. We identify several unexpected interactions

that lead to low throughput or unfairness among NFS

clients. We demonstrate that NFS delegation can signifi-

cantly boost performance, but can also incur large laten-

cies in the presence of delegation conflicts. Where pos-

sible, we make recommendations for improving NFS’s

performance under specific workloads.

The rest of this paper is organized as follows. Sec-

tion 2 describes our benchmarking methodology. Sec-

tions 3 and 4 discuss the results of random-read and

sequential-read tests, respectively. Section 5 covers NFS

delegations. Section 6 examines other micro-workloads

including random write, sequential write, and file cre-

ation. As a forerunner of our further study, Section 7

studies one macro-workload, a File Server. We discuss

related work in Section 8 and conclude in Section 9.

2 Methodology

This section details our experimental setup, benchmark-

ing methodology, and workloads.

2.1 Experimental Setup

We used six identical Dell PowerEdgeTM R710 ma-

chines for our study. Each has a six-core Intel XeonTM

X5650 2.66GHz CPU, 64GB of RAM, a Broadcom

BCM5709 1GbE card, and a Dell PERC 6/i RAID con-

troller with a 256MB battery-backed write-back cache.

Five NFS client machines are configured to mount from

one NFS server machine. Each computer had a dedi-

cated 150GB SEAGATE ST9146852SS SAS drive for

the OS. On the server, we set up a RAID-0 (often re-

ferred as “disk” for simplicity) for the NFS data, with

a stripe size of 64KB, using two additional SEAGATE

ST9146852SS drives.

We connected the six machines to a LAN using a Pow-

erConnect J-EX4200 48-port 1GbE switch. We mea-

sured a round-trip time (RTT) between two machines of

0.17ms, and a raw TCP bandwidth of 117MB/s. We note

that our setup of 1GbE network and HDDs is not the

state-of-the-art. However, as we will show, its simplic-

ity allows us to identify problems that are generic and

applicable to different setups as well.

All machines ran CentOS 6.4, the latest version at the

time when we started this study. We chose CentOS be-

cause it is a freely available version of Red Hat Enter-

prise Linux, often used in enterprise environments. We

experimented with both the 2.6.32-358.el6 (referred as

2.6.32el6) kernel that comes with CentOS 6.4, and a lo-

cally compiled vanilla 3.12.0 kernel. As our benchmarks

will show, there are many significant NFSv4.1 perfor-

mance differences between the old and new kernels.

Many parameters affect NFS performance, including

local file system type, format and local mount options,

network parameters, NFS and RPC parameters, and NFS

export and client mount options. We did not change

any OS parameters if not stated otherwise. We used the

default ext4 file system, with default settings, for the

RAID-0 NFS data drive, and chose the in-kernel imple-

mentation of the NFS server. Specifically, we used NFS

Version 4 Minor Version 1, the latest minor version of

NFSv4. By default, NFSv4.1 implementations do not

use RPCSEC GSS (although it is supported). Since we

focused on NFSv4.1 performance, we avoided security

overhead and chose not to use RPCSEC GSS.

We exported an ext4 directory via NFSv4.1 using

the default options, ensuring that sync was set and

writes were faithfully committed to stable storage as re-

quested by clients. We used the default RPC settings,

where the number of RPC slots is dynamically allocated.

The number of NFSD threads in our benchmarks is 32.

(We have tried different thread counts but observed no

noticeable performance difference because the perfor-

mance was primarily constrained by either the disk or

the network.) We also used the default NFS mount op-

tions. The NFSv4.1 rsize and wsize are 1MB.

2.2 Benchmarks and Workloads

We developed a benchmarking framework, named

Benchmaster, that can launch workloads on multiple

clients concurrently to minimize the potential negative

effects of time-unaligned benchmark startups. To verify

that Benchmaster can launch time-aligned workloads,

we measured the time difference by NTP-synchronizing

the clients and then launching a trivial program that sim-

ply writes the current time to a local file. We ran this test

1,000 times and found an average delta of 235ms and a

maximum of 432ms. This variation is negligible com-

pared to the 5-minute running time of our benchmarks.

Benchmaster also periodically collects system statis-

tics from various tools (iostat, vmstat, etc.)

and procfs entries (/proc/self/mountstats,

/proc/fs/jbd2/sda/info, etc.). This allows us

to see the changes in system behavior over time.

We ran tests for 5 minutes and performed at least three

runs, and computed the 95% confidence intervals for the

mean using the Student’s t-distribution. Unless other-

wise noted, we plot the mean of three runs’ results, with

the half widths of the intervals shown as error bars.

We benchmarked 5 common micro-workloads includ-

ing random read, sequential read, random write, se-

2

quential write, and file creation. We chose these work-

loads for four reasons: (1) They exercise NFS and

help identify performance bottlenecks and anomalies—

they revealed several problems that we discuss in this

paper. (2) They are fundamental building blocks for

many macro-workloads. We believe understanding these

micro-workloads is essential to understanding more

complex workloads. (3) They are simple and thus can

better isolate the individual effects we are examining.

(4) They can be easily tweaked to simulate many NFS

workloads with different characteristics. For example,

we can simulate disk-write-intensive workloads by spec-

ifying O SYNC in the random-write workload, and sim-

ulate metadata-intensive workloads by creating a large

number of small files in the file-creation workload.

We used two micro-workloads to examine the new

NFSv4 delegation feature, exploring both its potential

benefits and its cost in the presence of conflicting clients.

We also benchmarked one File Server macro-workload.

3 Random Read

This section discusses an NFS random-read workload

where five single-threaded NFS clients randomly read

a 20GB file with a given I/O size. Since the server’s

page cache can play an important role in this workload,

we started the experiment with both warm and cold NFS

server caches to evaluate the effects of both the network

and the disk.

We studied the warm-cache case first since it does not

involve disk I/Os and is thus simpler. Figure 1 shows

the NFS random read throughput results on the 2.6.32el6

and 3.12.0 kernels. We present two types of through-

puts: one is application read throughput (ART), which

measures the rate at which the application itself receives

data; the other is client read throughput (CRT), which

measures the rate at which the NFS client machine re-

ceives data from the server. We show the results for only

one client because all five clients produced similar per-

formance. The only noticeable difference is the CRTs

of the 2.6.32el6 kernel, which have large variations but

follow the same trend on all clients.

In Figure 1, the CRTs of the 3.12.0 kernel, for all

three different I/O sizes, stabilize at around 22MB/s,

because they are bounded by our network bandwidth,

which is 117MB/s. Considering the overhead of extra

RPC headers and NFS bookkeeping messages, an aggre-

gated throughput of 110MB/s is reasonable. The ARTs

of the 3.12.0 kernel start the same as the CRTs, but in-

crease slightly over time. It is because of the client-side

cache. As we read more data, the cache size increase

and the cache hit-ratio increase correspondingly.

In Figure 1, the CRTs of the 2.6.32el6 kernel, for all

three different I/O sizes, are also close to 22MB/s but

have large variations. The ARTs of the 2.6.32el6 ker-

n−y

n
n+xread of P

n

Space
Address
File

P0

readahead window

Pn

history P

1 Pn+1 P Pn+x−1 n+xn−yP Pn−1P

Figure 3: Linux readahead algorithm. The boxes represent

pages, and the shaded ones are cached pages.

nel start the same as the corresponding CRTs but then

drop almost monotonically. As time goes by, the ARTs

become much lower than the corresponding CRTs, sug-

gesting that a smaller portion of the data read by the NFS

client is actually being delivered to the application.

We note that the ARTs of the two kernels start

about the same but increase in 3.12.0 and decrease in

2.6.32e16. For all three I/O sizes—4KB, 16KB, and

64KB—the speedup in average ART when going from

2.3.32el6 to 3.12.0 was 3.3–3.4×. The 3.12.0 kernel also

has more stable CRTs over time.

The dramatic difference of ARTs between the two ker-

nels is caused by the NFS clients’ readahead mechanism,

which is similar in both kernels except for one small but

significant difference. The readahead algorithm is illus-

trated in Figure 3, where Pi is the ith page in a file’s

address space, and P i+j

i are the j consecutive pages

starting from Pi. For each read request, the algorithm

asks two questions: (1) whether readahead should be

performed, and (2) how much readahead to do. Both

questions depend on the history size, which is the num-

ber of consecutive cached pages immediately before the

current read offset. Considering a read request of Pn+x
n

with an offset at Pn and an I/O size of x pages, its his-

tory is Pn
n−y , where y is number of cached pages imme-

diately preceding page n.

The 2.6.32el6 and the 3.12.0 kernels differ in how

they answer the first readahead question. The old ker-

nel tests whether y > 0, while the new one checks

y > x where x is the read request size. Readahead in

the 2.6.32el6 kernel is aggressive but susceptible to false

positives. Upon reading Pn+x
n , readahead takes place

if Pn−1 happens to be cached. This explains why we

observed many readahead requests even in this random-

read workload. Readahead in the 3.12.0 kernel is more

conservative. For a 64KB I/O request, the required his-

tory size is 17 pages—17× the corresponding size in

2.6.32el6. Therefore, the probability of readahead for

random reads is much lower in 3.12.0.

� Observation 1: The readahead algorithm in Linux

3.12.0 is less aggressive than in 2.6.32el6, leading

to fewer false positives that are detrimental to NFS

random-read performance.

The answer to the second question of how much

readahead to perform is the same in both kernels. But

it is more complex and depends on many factors. Due to

space constraints, we note only the two factors that are

3

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Time (Seconds)

ART-2.6.32el6

CRT-2.6.32el6

ART-3.12.0

CRT-3.12.0

(a) 4KB I/O

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Time (Seconds)

ART-2.6.32el6

CRT-2.6.32el6

ART-3.12.0

CRT-3.12.0

(b) 16KB I/O

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Time (Seconds)

ART-2.6.32el6

CRT-2.6.32el6

ART-3.12.0

CRT-3.12.0

(c) 64KB I/O

Figure 1: Random read: Application Read Throughput (ART) and Client Read Throughput (CRT) with default readahead in the

2.6.32el6 and 3.12.0 kernels. There are 5 clients; Client1 is shown here and the others are similar. The server’s cache is warm.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Time (Seconds)

ART-2.6.32el6
CRT-2.6.32el6

ART-3.12.0
CRT-3.12.0

(a) 4KB I/O

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Time (Seconds)

ART-2.6.32el6
CRT-2.6.32el6

ART-3.12.0
CRT-3.12.0

(b) 16KB I/O

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Time (Seconds)

ART-2.6.32el6
CRT-2.6.32el6

ART-3.12.0
CRT-3.12.0

(c) 64KB I/O

Figure 2: Random read: Application Read Throughput (ART) and Client Read Throughput (CRT) with default readahead in the

2.6.32el6 and 3.12.0 kernels. There are 5 clients; Client1 is shown here and the others are similar. The server’s cache is cold.

relevant to our results: (1) the readahead size is large

when the history size is large, and (2) the size is scaled

against and constrained by the maximum readahead size

(MRS), a tunable parameter. The first factor explains the

ART drop of the 2.6.32el6 kernel in Figure 1: as we read

more data over time, more pages in the address space get

cached by the clients. Consequently, the history size and

the readahead size both increase. Since we were doing

random reads, a larger readahead size means more work

is wasted and a smaller portion of the CRT is being con-

verted to ART.

In both kernels, NFS has a default MRS as large as

15MB, which also contributes to the excessive reada-

head in 2.6.32el6. The MRS of an NFS mount point is

the product of NFS MAX READAHEAD, a constant fixed

at 15, and rsize, an NFS mount option with a default

value of 1MB.

Figure 2 shows the random-read throughputs when

the server’s cache is cold. As expected, the through-

puts are much lower than their counterparts in Figure 1.

Readahead is observed in the 2.6.32el6 kernel for all I/O

sizes; thus the CRTs are higher than the corresponding

ARTs. This is true even in the 4KB I/O case, where

all throughputs are lower than 2MB/s. In contrast, no

significant readahead is observed in the 3.12.0 kernel.

Comparing the two, Linux 3.12.0 has an ART that is on

average 2× higher than Linux 2.6.32el6 for 64KB I/Os.

The 2.6.32el6 kernel behaved similarly to the new ker-

nel when we set the MRS to small values. We did not

completely disable it because in both kernels, disabling

readahead has the unexpected side effect of breaking

large I/O requests into numerous smaller ones. When

there is no readahead, Linux calls readpage instead

of readpages, so all NFS READs become single-page.

With a 64KB I/O size, 1 client, and a warm server cache,

we measured an average ART of only 22MB/s when

MRS was zero, but 68MB/s when MRS was 64KB.

4 Sequential Read

This section discusses an NFS sequential-read workload,

where five NFS clients repeatedly scan a 20GB file from

beginning to end. All clients read the file as fast as possi-

ble. The benchmark I/O size is 64KB and the readahead

settings have default values.

4.1 The Winner-Loser Pattern

In contrast to random workloads where the throughput

bottleneck is the server-side disk, sequential workloads

are limited by the 1GbE network. Both the application

and client read throughputs of the clients sum to around

112MB/s in both the 2.6.32el6 and 3.12.0 kernels.

When we analyzed the read throughput of individ-

ual NFS clients, we frequently observed that two of the

five had a throughput of around 14MB/s, while the other

three reached about 28MB/s. Occasionally, two clients

had throughputs around 37MB/s, and the other three

had throughputs around 12MB/s. There were also cases

when all five clients had the same throughputs, around

22.5MB/s. In all cases, the throughputs were stable over

time within a single experiment, but not stable across

experiments. For example, Client1 might have a con-

stant throughput of 14MB/s in one run, but a constant

throughput of 28MB/s in another run. Note that in all

cases, the aggregated throughput was 112MB/s.

In approximately 80% of our experiments, we ob-

served this winner-loser pattern, which has three char-

acteristics: (1) there are two clusters of clients, one

with high throughput (winners) and another with low

4

 0

 40

 80

 120

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Time (Seconds)

Client1

Client2

Client3

Client4

Client5

Figure 4: Sequential read: throughputs when clients are

launched one after the other at an interval of one minute. The

kernel version is 2.6.32el6.

throughput (losers); (2) the winners and losers are con-

sistent over time within one experimental run but are not

consistent across multiple runs; and (3) most often, the

winner throughputs are about twice those of the losers—

but occasionally the winners have about 3× the through-

puts of the losers.

� Observation 2: When multiple NFS clients are

reading data from an NFS server, there can be a

winner-loser pattern where the network bandwidth is

unfairly distributed among the clients.

The winner-loser pattern was unexpected since all five

clients in our experiments have the same hardware, soft-

ware, and settings, and they are performing the same

operations. Initially, we suspected that the pattern was

caused by the order in which the clients launched the

workload. To identify any correlation between launch

order and the winner-loser pattern, we repeated the same

experiments but launched the clients in a controlled or-

der, one additional client every minute. Figure 4 shows

the result of one such experiment, where Client1 started

first but ended up as a loser, whereas Client5 started

last but became a winner. It was clear that there was

no correlation between experiment launch order and the

winner-loser pattern. (Note that in Figure 4 the winners

always have about twice the throughputs of the losers.)

Moreover, we were able to reproduce the winner-loser

pattern at the TCP level using a simple test. A (non-

NFS) client establishes a TCP connection to a server and

then uses multiple threads to request data as fast as possi-

ble; the server sends null data to the clients as requested.

The fact that the winner-loser pattern happens in TCP

rather than NFS has broad implications since TCP ac-

counts for 85% to 95% of wide-area Internet traffic [30].

We believe Hash-Cast has impact on a large number of

TCP based applications as TCP Incast [35], another net-

working problem identified in storage systems, has.

4.2 Hash-Cast

To understand the winner-loser pattern, we analyzed the

network traffic, but found no sign of network congestion

(no packet losses, retransmissions, or Explicit Conges-

tion Notifications), nor any significant difference among

the TCP congestion window sizes (cwnd) of the clients’

Client1

tx1 tx2 tx3 tx4 tx5 tx6 tx7tx0

NIC Transmit Queues

packet

Sending data
NFS

Client4
Client5

Server

Client2

Client3
Ethernet
Switch

Figure 5: Illustration of Hash-Cast.

connections. We traced the networking stack on both the

client and the server and discovered that the winner-loser

pattern is closely related to the physical transmit queues

of the server’s network interface card (NIC).

A NIC typically has a physical transmit queue

(tx-queue) holding outgoing packets, and a physical

receive queue (rx-queue) tracking empty buffers for

incoming packets [38]. The tx-queue is FIFO [42],

but this does not prevent Linux from advanced traffic

control because packets are regulated by queue disci-

plines (qdiscs) in upper-layer software queues.

Many modern NICs, especially advanced ones, have

multiple sets of tx-queues and rx-queues [38].

Those multi-queue NICs are becoming increasingly

common for at least four reasons: (1) They allow net-

working to scale with the number of cores in modern

computers. Each queue has its own IRQ and can be

configured to interrupt specific core(s). (2) They pro-

vide larger bandwidth, as seen in 10GbE and 40GbE

NICs [16]. (3) They fit well with wireless devices [42].

(4) They facilitate increasingly popular virtualization

techniques with better NIC virtualization, packet switch-

ing, and traffic management [38].

In the presence of multiple tx-queues, each out-

going packet needs to choose one tx-queue to use.

Linux uses hashing for this purpose. However, not

all packets are hashed; instead, each TCP socket has

a field recording the tx-queue the last packet was

forwarded to. If a socket has outstanding unacknowl-

edged packets, further packets are placed in the recorded

tx-queue. Otherwise the next packet is hashed to a

randomtx-queue. This approach allows TCP to avoid

generating out-of-order packets by placing packet n on

a long queue and n+1 on a shorter one. However, a side

effect is that for highly active TCP flows, the hashing is

effectively done per-flow rather than per-packet.

The winner-loser pattern is caused by uneven hash-

ing of TCP flows to tx-queues. In our example, the

server has five TCP flows (one for each client) and a

NIC with eight tx-queues. If two of the flows are

hashed into one tx-queue and the rest are hashed into

three separate tx-queues, then the two flows shar-

5

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

Number of TCP Flows

RT-5
RT-3
RT-2

Figure 6: Probability of occurrence of Winner-Loser Pattern

for different winner-loser ratio thresholds (RT).

ing a tx-queue will get lower throughput than the

other three because all tx-queues are transmitting

data at the same rate. We refer to this phenomenon—

hashing unevenness causing a winner-loser pattern of

throughput—as Hash-Cast. Hash-Cast is illustrated in

Figure 5, which helps explain the performance in Fig-

ure 4. First, Client1 and Client2 were hashed into tx4

and tx2, respectively. Then, Client3 was hashed into

tx4, which Client1 was already using. Later, Client4

and Client5 was hashed into tx1 and tx6, respectively.

Hash-Cast also explains why the losers usually get half

the throughputs of the winners: the {1,1,1,2} distribu-

tion is the most probable hashing result. In the rarer

case of a {1,1,3} distribution, the winners get thrice the

throughputs of the losers—and sometimes {1,1,1,1,1} or

the very rare {5} distribution will achieve equality.

� Observation 3: The winner-loser pattern happens

in the TCP layer and is caused by the Hash-Cast be-

havior of multi-queue NICs.

Compared to explicit load balancing, hashing is a sim-

pler and more efficient way to assign flows (or packets)

to queues, since the uniform distribution of hash val-

ues promises stochastic fairness [32] over the long term.

However, as noted by McKenney [32], stochastic fair-

ness does not come for free, and the price is loss of deter-

minism and of absolute fairness guarantees. Moreover,

stochastic fairness reaches statistical uniformity only for

large numbers of samples. With only a few tx-queues

(8 in our NIC) and a small number of flows (less than

100), unfairness is highly likely.

A precise mathematical analysis of this phenomenon

is beyond the scope of this paper, so to better understand

the problem we defined the winner-loser ratio as the ra-

tio of the highest to the lowest throughput. We then sim-

ulated the probabilities of observing a winner-loser ratio

above n, for different values of n. The simulated prob-

abilities for 8 tx-queues are shown in Figure 6. With

a threshold of n = 2, the probability of seeing a winner-

loser pattern is above 0.9 for any number of TCP flows

between 6 and 60. Even with a high threshold of n = 5,

the probability of the winner-loser pattern appearing is

over 0.2 for any number of flows between 15 and 53,

and above 0.4 for flow counts between 18 and 33.

 0
 5

 10
 15
 20
 25
 30
 35

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Time (Seconds)

Client1

Client2

Client3

Client4

Client5

Figure 7: Sequential read: extreme winner-loser pattern with

default settings in Linux 3.12.0.

� Observation 4: The winner-loser pattern shows

up with a high probability when there is a small num-

ber of data-intensive TCP flows.

4.3 Bufferbloat

To work around the Hash-Cast problem, we experi-

mented with many networking parameters. One option

is the TCP congestion-control algorithm, which defaults

to TCP CUBIC. Of the 14 such algorithms available in

the vanilla kernel, we found that only TCP VEGAS does

not show the winner-loser pattern.

Comparing CUBIC with VEGAS in the 2.6.32e16

kernel, we found that the TCP congestion window size

(cwnd) is markedly different between the two: 23 for

VEGAS and 1,900 for CUBIC. Our 1Gbps network has

an RTT of 0.17ms, so its bandwidth-delay product is

about 109/8 × 0.00017 = 21, 250. Since an Ethernet

packet is about 1,500 bytes, this translates to about 14

packets that can be in transit at one time. VEGAS’s 23-

packet cwnd is of roughly comparable size, while CU-

BIC’s 1,900 strongly suggests bufferbloat [20], a phe-

nomenon where excessive network buffering causes un-

necessary latency and poor system performance.

The TCP algorithm dynamically adapts to the con-

nection speed by probing and responding to congestion;

excessive buffers interfere with this mechanism by in-

serting artificial delay, eventually leading to unnecessary

retransmissions and thus even greater congestion. The

problem is worst when there are multiple flows, because

one flow can create a queue that takes many seconds

to drain, so that other flows see long delays. A shorter

queue, in contrast, would allow each flow to adapt to the

other’s presence more quickly. In fact, when we changed

TCP CUBIC and set its cwnd clamp—an upper limit

for cwnd—to 64, the winner-loser pattern disappeared.

� Observation 5: The winner-loser problem is ex-

acerbated by bufferbloat.

To combat bufferbloat, new features such as Byte

Queue Limits (BQL) [7] and TCP Small Queue

(TSQ) [8], have been introduced into new Linux kernels.

We ran NFS sequential-read experiments under Linux

3.12.0 and observed a 10× reduction in CUBIC’s cwnd.

Unfortunately, a winner-loser pattern still appeared.

6

 0
 5

 10
 15
 20
 25
 30
 35

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Time (Seconds)

Client1
Client2

Client3
Client4

Client5

Figure 8: Sequential read: the winner-loser pattern when TSQ

is 16KB in Linux 3.12.0.

However, the winner-loser pattern was different in

three ways under 3.12.0: (1) The pattern can appear

when there is no Hash-Cast, i.e., when all 5 clients have

dedicated tx-queues. Out of 100 experimental runs,

we observed 4 such cases, one of which is shown in Fig-

ure 7. (2) Losers do not always have one-half or one-

third of the winners’ throughput; sometimes, the loser

can lose badly. For example, Figure 7 shows a case

where Client4 has throughput below 1.3MB/s while all

other clients receive more than 25MB/s; this is a 19×
difference. (3) Unlike in Linux 2.6.32el6, the losers can

have significantly different throughputs. For instance, in

Figure 8, one loser (Client3) has a throughput of around

10MB/s and another (Client2) gets about 18MB/s.

Our investigation into Figure 7 revealed that the num-

ber of packets sent to each client is about the same, but

Client4 has an average packet size of around 3KB while

all other clients generate packet sizes over 50KB. (Our

NIC supports TCP Segmentation Offload (TSO) [8], so

packets can be larger than 1,500B.) The difference in

packet sizes is caused by a new kernel feature called

TSO packets Automatic Sizing (TSO-AS) [9]. The mo-

tivation for TSO-AS is to avoid bursty traffic by dynam-

ically calculating the packet sizes of a TCP flow based

on its previous sending rate. If a TCP flow starts with a

low rate, this algorithm will assign it a small packet size.

The packet size and the sending rate can form a feed-

back loop, which can force the TCP flow’s rate to stay

low. The author of the TSO-AS patch confirmed this in

our discussion and submitted a patch to address this [17].

The author also pointed out that TCP is greedy by itself,

and traffic control such as fair queueing is required to

achieve fairness.

A smaller TSQ value can reduce the effects of TSO

and TSO-AS, leading to uniform packet sizes among the

clients. We lowered the value of TSQ but still observed

the winner-loser pattern caused by Hash-Cast. Figure 8

is an example with TSQ set to 16KB. While the aver-

age packet size was about 7.3KB for all clients, Client2

and Client3 received fewer packets because they were

sharing a tx-queue. Compared with results from the

older kernel (not shown), Figure 8 is less stable and

the two losers (Client2 and Client3) receive unequal

throughputs—yet they still sum to 28MB/s, which is

close to the throughputs of the winners in Figure 8.

We have also experimented with different settings of

BQL, but found that it did not improve the winner-loser

pattern. The throughputs of the clients were unpre-

dictable, and we were not able to correlate the resultant

values to any parameters, including Hash-Cast, number

of packets sent, and the average packet sizes.

Note that TCP VEGAS does not show a winner-loser

pattern in either Linux 2.6.32el6 or Linux 3.12.0. For

subsequent experiments reported in this paper, we used

VEGAS as our congestion-control algorithm to avoid

the winner-loser pattern, which can distort the effects of

other system components. We note that VEGAS does

not interact well with non-VEGAS hosts and can result

in low throughput in the presence of network rerout-

ing [26]. However, considering our controlled network

environment, the issues of VEGAS should be minor.

Another alternative to work around the winner-loser pat-

tern is using only one queue and fair queueing [17]. The

argument is that TSO can be effective enough to achieve

high utilization using just one queue. However, we are

conservative about its performance impact on workloads

with smaller I/O sizes, where TSO is less effective.

5 NFSv4 Delegation

This section discusses a key feature of NFSv4, delega-

tions. We focus on read delegation of regular files be-

cause that is the simplest type, and also is the only one

currently supported in the Linux kernel [18]. We dis-

cuss (1) how delegations are granted, (2) their benefits in

the absence of inter-node conflicts on the delegated files,

and (3) the costs of delegations when there are conflicts.

5.1 Delegation Grant

Delegation is a new feature of NFSv4 for improving per-

formance. When the server delegates a file, the client

obtains control of it. Until the delegation is released, the

client does not need to ask the server to operate on the

file. This can significantly boost performance since it

saves the usually slow latency of network communica-

tions. Delegations are based on the observation that “file

sharing is rarely concurrent” [27]. Thus it is expected

to benefit performance most of the time. But it can also

hurt performance if concurrent and conflicting file shar-

ing does happen.

The NFS server grants delegations to clients in re-

sponse to file opens. However, clients must not assume

that a delegation will be granted, and after granting a

delegation the server is free to recall it at any time via a

back-channel connection.

To recall a delegation, an NFS server might have

to exchange many messages with one or more clients,

incurring a considerable delay. Therefore, the server

should consider the probability of potential conflicts

7

NFSv4.1 Operations No Delegation Delegation

OPEN 1000 1000

READ 10000 1000

CLOSE 1000 1000

GETATTR 10001 1

LOCK 10000 0

LOCKU 10000 0

FREE STATEID 10000 0

Table 1: NFSv4.1 operations performed by each client when

a delegation is or is not granted. Each operation represents

a compound procedure; trivial operations in the same com-

pound procedure, such as PUTFH and SEQUENCE, are omitted

for clarity. Other seldom used operations, such as FSINFO, are

also omitted. The kernel version is 3.12.0.

when it is deciding to issue a grant. Relevant factors in-

clude back-channel availability, current conflicting op-

erations, the client’s delegation history, etc. However,

because Linux supports only file read delegations, its

NFS servers can use a simpler decision model. A del-

egation is granted if three conditions are met: (1) the

back channel is working, (2) the client is opening the file

with O RDONLY, and (3) the file is not currently open for

write by any client.

During our initial experiments we did not observe any

delegations even when all three conditions held. We

traced the kernel using SystemTap [36] and discov-

ered that the Linux NFS server’s implementation of del-

egation is outdated in that it does not recognize new del-

egation flags introduced by NFSv4.1. The effect is that

if we get the filehandle of a file before we open it, for

example by using stat, delegation will not be granted.

To fix the problem, we created a kernel patch [6], which

has been accepted into the Linux mainline.

5.2 Locked Read

To quantify the benefit of delegations when there are no

client conflicts, we scaled up and performed the delega-

tion experiment in Nache [23]. We pre-allocated 1,000

4KB files for each of five clients in five different NFS

directories. For each of its files, a client opened the file

once, then repeatedly locked it, read the entire file, and

unlocked it. After ten repetitions the client closed the

file and moved to the next one.

We list the number of NFS operations both with and

without delegation in Table 1. Without a delegation,

each application read introduced an NFS READ despite

the fact that the same reads were repeated ten times. This

happened because locked reads required the NFS client

to ensure cache coherency by validating the latest file

state with the server. An important detail is the times-

tamp granularity offered by the NFS server. Tradition-

ally, NFS provides close-to-open cache consistency [29].

Timestamps are updated at the server when a file is

closed, and any client subsequently opening the same

file revalidates its local cache by checking the file’s at-

tributes with the server. If the locally-saved timestamp

of the file is out of date, the client’s cache of the file is

invalidated. Unfortunately, some NFS servers offer only

a one-second timestamp granularity, which is too coarse;

clients might miss intermediate changes (within one sec-

ond) made by other clients. In this situation, the NFS

locking mechanism provides stronger cache coherency

by first checking the server’s timestamp granularity. If

the granularity is finer than one microsecond, the client

revalidates the cache by following the traditional ap-

proach of using GETATTR. For coarser granularities, the

Linux client invalidates its cache of the locked file. Since

the Linux in-kernel server uses one-second granularity,

each client READ incurs a corresponding server READ as

the preceding LOCK has invalidated its local cache.

Invalidating the entire cache of a file can be expensive,

since NFS is often used to store large files such as vir-

tual disk images, databases, audio and visual media, etc.

This scenario is worsened by two factors: (1) cache in-

validation happens even when we are just acquiring read

locks, and (2) the entire cache of a file is invalidated even

if we are just locking one byte of that file.

� Observation 6: Using the Linux NFS client and

server, locking an NFS file is an effective way to

achieve cache consistency, but it can be expensive be-

cause it invalidates the file’s entire client-side cache.

In contrast, the NFS client with delegation was able

to satisfy nine of the repeated ten READs from the page

cache. There was no need to revalidate the cache at all

because its validity was guaranteed by the delegation.

The second difference we noticed between the no-

delegation case and delegation case is the number of

GETATTR operations, which is a side effect of the cache

invalidation caused by locking. For each file read, the

client revalidates the file’s inode information (mapping)

before sending the READ request. Note that the preced-

ing locking invalidates not only the file’s page cache,

but also its cached inode. A GETATTR is thus sent for

this revalidation. A potential optimization would be to

have the client append a GETATTR operation to the LOCK

and the server piggyback file attributes in its reply. This

could save 10,000 RPCs for the GETATTRs.

The remaining differences between the experiments

with and without delegations were due to locking. A

LOCK/LOCKU pair is sent to the server when the client

does not have a delegation; conversely, no NFS com-

munication is needed for locking when delegation ex-

ists. One FREE STATEID follows each LOCKU to free

a stateid that no longer has any associated locks. A

potential optimization here would be to append the

FREE STATEID operation to the compound procedure of

LOCKU. This could save another 10,000 RPCs.

8

NFSv4.1 Operations No Delegation Delegation

OPEN 1000 1000

DELEGRETURN 0 1000

OPEN NOATTR 0 1000

Table 2: NFSv4.1 operations performed by each DG client.

OPEN NOATTR is not an NFS operation, but rather a Linux

shorthand for an NFS compound procedure containing three

operations: SEQUENCE, PUTFH, and OPEN.

NFSv4.1 Operations No Delegation Delegation

OPEN 1000 2000

Table 3: NFSv4.1 operations performed by each RG client.

In total, the number of NFS operations performed by

each client without delegation was over 52,000. That

number dropped to just 3,000 with delegation. In terms

of running time, the experiment finished in 7.8 seconds

without delegation, but only 0.76 seconds with delega-

tion. That is, delegation speeds up this particular exper-

iment over 10×. In terms of the amount of data sent

and received, the no-delegation case sent 9.6MB of data

and received 45.8MB, whereas the delegation case sent

0.6MB and received 4.5MB. Delegation reduces both

the incoming and the outgoing traffic by 90%.

� Observation 7: NFS read delegation can effec-

tively improve performance by reducing the number

of NFS operations when files are locked and there are

no delegation conflicts among clients.

5.3 Delegation Recall

To explore the overhead of conflicting delegations, we

created two groups of NFS clients. Clients in the first

group, called Delegation Group (DG), grab and hold

NFS delegations on 1,000 files. Clients in the second

group, Recall Group (RG), recall the NFS delegations of

the 1,000 files held by the DG clients. DG clients obtain

their delegations by opening the files with O RDONLY;

RG clients recall them by opening the same files using

O RDWR. We varied the number of clients in RG from

one to four to test the scalability of delegation recall.

For n clients in the DG, there were n recalls when a RG

client opened a file because each DG client’s delegation

had to be recalled separately.

We compared the two cases when the DG clients were

and were not holding delegations. Table 2 and 3 list the

number of NFS operations performed by each DG and

RG client, respectively. Each DG client took two NFS

operations to respond to a delegation recall. The first

is a DELEGRETURN, which returns the delegation to the

server. The second is an OPEN, which the DG client

used to re-open the file since the old stateid associated

with the delegation was no longer valid.

For the RG client, the presence of delegation incurred

one additional NFS OPEN per file. The first OPEN failed

 0

 20

 40

 60

 80

 0 1 2 3 4 5

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Number of Clients

4KB-IO
16KB-IO
64KB-IO

Figure 9: Random write: throughput with O SYNC. When

there are multiple NFS clients, the throughput plotted is the

sum of all clients’ throughputs. The kernel version is 3.12.0.

with NFS4ERR DELAY because the server needed to re-

call outstanding delegations. The second open was sent

as a retry and succeeded.

The running time of the experiment varied dramat-

ically: 0.2 seconds in the no-delegation case and 100

seconds in the delegation case. The 500× delay was in-

troduced by the RG client, which failed in the first OPEN

and retried it after a timeout. The timeout is initialized

to 0.1 second, and is doubled every time the retry fails.

This timeout dwarfed other delays, and the running time

was 100 seconds no matter how many clients existed in

DG. An initial timeout as long as 0.1 second is ques-

tionable considering our small networking latency. Also,

without write delegation, there is no need to allow time

to flush dirty data upon recall. We believe it would make

sense to start with a smaller timeout; if that turns out

to be too small, we can back off quickly since timeouts

increase exponentially.

� Observation 8: In case of delegation conflict, an

NFS open will be delayed for at least 100ms—more

than 500× the RTT of our 1GbE network.

6 Other Micro-Workloads

This section discusses three more micro-workloads: ran-

dom write, sequential write, and file creation.

6.1 Random Write

The random-write workload is exactly like the random-

read one discussed in Section 3 except that the clients

are writing data instead of reading. Each client has one

thread that repeatedly writes a specified amount (I/O

size) of data at random offsets in a preallocated 20GB

file. All writes are in-place and do not change the file

size. We set the O SYNC flag when we open the file, to

ensure that the clients write data back to the NFS server

instead of just caching it locally. This setup is similar

to many I/O workloads in virtualized environments [45],

which are big users of NFS.

Figure 9 shows the NFS random-write throughput for

three different I/O sizes. The throughputs shown in Fig-

ure 9 are higher than commodity hard disks because we

use a two-drive RAID-0 and our controller has a 256MB

battery-backed writeback cache. We ran the experiments

9

long enough to ensure that the working sets, including in

the 4KB I/O case, were much larger than 256MB. As ex-

pected, larger I/O sizes led to higher throughput because

disk seeks were reduced.

In Figure 9, the number of NFS clients also influ-

enced the throughput, although not as much as the I/O

size. The influence is most obvious at 64KB: when we

went from 1 to 2 single-threaded clients, the 64KB write

throughput increased from 42.5MB/s to 62MB/s, which

approaches our disk’s maximum bandwidth of 66MB/s

at that size. These numbers closely match calculations

based on our 1Gbit/s network speed: a 64KB packet

takes approximately 0.5ms to transmit, and at maximum

throughput the disk latency is about 1ms. Thus, the

single-client NFS throughput will be 64KB/1.5ms ≈
42MB/s. Note that our calculation assumes that the disk

latency is the same regardless of network delays. In re-

ality, a 0.5ms network latency has at least two effects on

disk latency: (1) The network latency reduces disk uti-

lization, which increases the probability of missing disk

revolutions and makes head scheduling less effective.

(2) It reduces congestion, which decreases disk queue-

ing latency. Although the first effect tends to lengthen

the I/O latency, the second tends to shorten it.

When we increased to two clients, the disk became

the bottleneck because it cannot write data faster than

66MB/s, but the network can transmit data for one client

while the other is waiting for the disk. Thus, multiple

NFS clients interleave network transmission and keep

the disk busy, which leads to a NFS write throughput

close to the disk’s maximum capability.

When the I/O size was 4KB or 16KB, the impact of

the number of clients on write throughput was smaller.

The main reason is that the disk became 6× and 25×
slower than the network when the I/O size shrank to

16KB and 4KB, respectively. Disk latency became the

primary factor in write latency (86% in the 16KB case

and 96% in the 4KB case). Therefore, adding clients did

not significantly improve the throughput.

We also tried running the clients without setting

O SYNC, which generated a bursty workload to the NFS

server. Clients initially realized high throughput (over

1GB/s) since all data was buffered in the client cache.

Once the number of dirty pages in the caches passed

a threshold, the throughput then dropped to zero as the

NFS clients flushed the dirty pages to the server, which

could take up to 5 minutes depending on the I/O size and

the number of clients. After that, the write throughput

became high again, and then repeated the same pattern.

6.2 Sequential Write

The NFS sequential-write workload has the same setup

as the random-write one, except that the write offsets are

chosen sequentially from the beginning to the end of the

 0

 50

 100

 150

 200

 250

1 2 3 4 5

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Number of Clients

Server-EXT4: 203.9

Server-NFS: 92.19

44.24
63.91

83.39 90.69 94.74

Figure 10: Sequential write throughput. When there are multi-

ple NFS clients, the plotted throughput is the sum of all clients’

throughputs. The blue line marks the throughput when we ran

the workload directly on ext4 without NFS. The green line

marks the throughput when we ran the workload via NFS on

the same machine the NFS server resides on, i.e., without any

network traffic. O SYNC is set. The kernel version is 3.12.0

file. The I/O size is 64KB. We again set the O SYNC flag

when we open the file to ensure dirty data is immediately

committed to disk.

The throughput results are shown in Figure 10. All

throughputs were lower than 50% of the maximum

sequential-write throughput of our disk. We initially sus-

pected that the low throughputs were caused by network

issues. However, the sequential-write throughput was

only 92MB/s even when executed directly on the NFS

server over the loopback device.

We found that the low sequential-write throughputs

were actually caused by metadata updates and associ-

ated jbd2 journaling. We used the default settings of

ext4, so the data mode is data=ordered, which jour-

nals metadata but not file data. When we ran the work-

load directly on ext4, we observed only a negligible

number of journal I/Os, and measured a throughput of

203.9MB/s, as shown in Figure 10. However, when we

ran the same workload via NFS, we observed many 4KB

journal I/Os. As an example, in the single-client case

there were an average of 2.7 journal I/Os for every NFS

write. The cause of this difference is the O SYNC flag,

which has different semantics on in ext4 than in NFS.

The POSIX semantics of O SYNC require all metadata

updates to be synchronously written to disk. On Linux,

however, the O SYNC flag is implemented so that only

the actual file data and the metadata necessary to retrieve

it are written synchronously. Since our workloads use

only in-place writes, which update the file’s modifica-

tion time but not the block mapping, writing an ext4

file introduces no journal I/Os. However, NFS imple-

mentation more strictly adheres to POSIX semantics by

using the NFS FILE SYNC4 flag, which requires the

server to commit both the written data and “all file sys-

tem metadata” to stable storage before returning results.

Therefore, sequential write workloads on NFS generate

many synchronous journal I/Os in the exported server

file system. (We also observed journal I/Os in the NFS

random-write workload, but the effect of extra journal-

10

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 1 2 3 4 5

S
pe

ed
 (

T
ho

us
./S

ec
.)

Number of Clients

0KB-File

4KB-File

16KB-File

64KB-File

256KB-File

Figure 11: File creation speed. The kernel version is 3.12.0.

ing was less noticeable since performance was already

limited by heavy seeking.)

� Observation 9: In Linux, the O SYNC flag causes

more metadata to be synchronously written to disk

when used with NFS than with local file systems, re-

ducing write performance by 50% or more for some

workloads.

In the sequential-write workload, the journal I/Os also

disturb the sequentiality of disk I/O, causing additional

seeks that lower write throughput. One way to avoid this

is using a separate journal device. Also note that in Fig-

ure 10, the write throughput rose monotonically as we

added clients. In addition to the increased client par-

allelism discussed above for random writes, journaling

became more efficient because jbd2 was able to group

multiple atomic file updates into a single journal transac-

tion. As the number of clients increase from 1 to 5, more

could be grouped and the average number of updates per

transaction monotonically increased from 19 to 53. Cor-

respondingly, the ratio of journal to data I/Os decreased

from 2.7 to 0.96. Thus, the cost of metadata journaling

decreases as the number of clients increases.

We also tried the sequential-write workload without

setting O SYNC. The behavior was similar to that of the

random-write workload without O SYNC.

6.3 File Creation

Most of the workloads discussed so far are data-

intensive, so they are more sensitive to network and I/O

bandwidth than to latency. We now turn to a latency-

sensitive workload. We chose file creation because it

involves many metadata operations and we can easily

control the latency sensitivity by adjusting the file size

to change the relative weight of metadata operations.

We exported one directory via NFS and instructed the

clients to create 100,000 files of a given size there, as

fast as possible. Figure 11 shows the file creation speed

when we varied the file size from 0KB to 256KB. The

speed of file creation scaled well with the number of

clients in the 0KB and 4KB cases. For these small sizes,

metadata operations dominate the workload; neither net-

work nor I/O bandwidth are the bottleneck. Larger files

eventually reach a limit because they are constrained by

network bandwidth.

As seen in Figure 11, creating smaller files was gen-

erally faster than creating larger ones. This is expected,

since more data must be transmitted and written to disk.

However, Figure 11 shows an anomaly: with only one

client, creating 0KB files was no faster than creating

4KB ones. Creating a 0KB file requires two NFS opera-

tions: an OPEN and a following CLOSE. Creating a 4KB

file also involves a WRITE. It is counterintuitive that the

extra WRITE operation did not slow down performance.

Our analysis reveals that the OPEN for 0KB files under-

went a longer queueing delay (the latency from when the

open was generated to when it was sent across the net-

work) than the OPEN in the 4KB case. This extra delay

was significant enough to compensate for the cost of the

extra WRITE in the single-client, low-load case. As the

number of clients increased, the system load rose and the

WRITE delay became larger than the extra READ queue-

ing delay. Thus, creating 0KB files became faster than

creating 4KB files when there were multiple clients.

The extra queueing delay for the 0KB OPEN is caused

by the TCP Nagle algorithm, which trades latency for

bandwidth by coalescing multiple small packets. When

the upper network layers queue a small outgoing packet,

a TCP socket first waits in the hope of merging it with

a future packet. The TCP Nagle algorithm reduces the

average overhead of networking headers, which can be

large in case of a lot of small messages. Since 0KB files

required only OPEN and CLOSE, both of which are small,

TCP Nagle waited unnecessarily. The extra 4KB WRITE

was large and caused the preceding OPEN to be flushed,

thereby improving performance.

We note that the socket API gives applications control

over the TCP Nagle algorithm with the SO NODELAY

option. However, we cannot directly use this option in

RPC because it influences the whole socket, not just par-

ticular messages sent through it. A possible workaround

would be for RPC to reserve some TCP sockets with

SO NODELAY set, and use them for latency-sensitive

messages. Alternatively, we could make TCP Nagle

more adaptive, performing coalescing only when a high

outgoing flow rate has been recently observed.

7 File Server Workload

This section discusses a general-purpose workload that

is more complex than micro-workloads and more closely

matches real-world workloads. Specifically, we study

Filebench’s File Server workload [19], which emulates

multiple users working in their respective home direc-

tories. This workload is similar to that generated by

SPECsfs [43]. Filebench creates a number of threads,

each of which performs a sequence of operations includ-

ing creates, deletes, appends, reads, writes, stats, and

closes. The close operations ensure that dirty data is

written back to the NFS server. We used Filebench’s de-

11

 0

 1000

 2000

 3000

 4000

 5000

 0 1 2 3 4 5

#O
ps

/S
ec

Number of Clients

1 thread

2 threads

5 threads

10 threads

Figure 12: File Server performance. When there are multiple

clients, the ops/s is the sum of ops/s across the clients. The

kernel version is 3.12.0.

 0

 0.5

 1

 1.5

 0 1 2 3 4 5

I/O
 A

w
ai

t T
im

e
(m

s)

N

N-client-1-thread

1-client-N-thread

Figure 13: Average I/O wait time of File Server.

fault settings for the workload: each instance works with

10,000 files with an average size of 128KB. We ran the

workloads for 5 minutes. The kernel version is 3.12.0.

To test NFSv4.1’s scalability, we varied the number

of threads and the number of NFS clients. To emulate

multiple users on multiple NFS-supported workstations,

we launched one instance of the File Server workload on

each client.

Figure 12 shows the benchmarking results in terms of

the number of File Server operations performed per sec-

ond. Comparing the curves in Figure 12, the number of

threads had a significant impact, although the difference

became minor as the number of clients increased. The

trends of the curves were also different. For the 1-thread

and 2-thread cases, overall performance increased ini-

tially but dropped slightly as more clients were added,

suggesting that the system quickly became overloaded.

Because of the frequent close operations in the work-

load, large amounts of dirty data were regularly flushed

to the disk. The disk quickly got saturated and became

the performance bottleneck; eventually, the system be-

gan to thrash and performance dropped. This effect

was seen sooner in the 5- and 10-thread cases, where

even one client could generate dirty data faster than the

disk’s throughput, so the performance decreased mono-

tonically as we added clients.

In Figure 12, adding clients did not increase perfor-

mance as much as adding threads. The ops/s for one

client running five threads was 18% higher than that for

five clients running one thread each, because the I/O

working set increased as we added clients, but not as we

added threads. Recall that each client has one instance

of File Server containing 10,000 files. A larger working

 0
 100
 200
 300
 400
 500
 600

 0 1 2 3 4 5

#O
pe

ra
tio

ns
 (

T
ho

us
.)

N

N-client-1-thread: ACCESS
1-client-N-thread: ACCESS

N-client-1-thread: GETATTR
1-client-N-thread: GETATTR

Figure 14: Number of NFSv4.1 ACCESS and GETATTR opera-

tions of File Server.

set increases the number and range of disk seeks. Fig-

ure 13, showing the wait time from iostat, confirmed

this. (The I/O wait time includes both queuing and ser-

vice time, which are correlated under heavy load. We

do not report iostat’s svctm statistic because it is

inaccurate and is scheduled to be removed [21].)

A larger working set (with more files and directo-

ries) also incurs more NFS metadata requests. Figure 14

lists the number of ACCESS and GETATTR requests—the

two most frequent metadata requests—in the 1-client-

N-thread cases and the N-client-1-thread cases. For

any x ∈ [2, 5], the x-client-1-thread case, notwithstand-

ing its lower ops/s (in Figure 12), causes more ACCESS

and GETATTR operations than the 1-client-x-thread case.

Moreover, for cacheable content such as metadata and

read-only file data, multiple threads in the same client

need to request the content only once and share a com-

mon cache, whereas threads across different clients have

to request it separately.

8 Related Work

The correctness and interoperability of the Linux NFS

implementation are regularly tested by well known

tools [2, 33, 34]. Its performance is usually bench-

marked using either NFS-specific tools such as NF-

Someter [1] and SPECsfs [39, 43], or general file sys-

tem tools such as Filebench [19], and IOzone [5]. Sim-

ilarly, the performance problems of NFS can be iden-

tified using NFS-specific tools such as nfsdump and

nfsscan [13], or general tools such as tcpdump [22]

and SystemTap [36].

Although well-established macro-benchmark

suites [1, 19, 43] provide convenient baselines for

comparing performance among different systems,

their results are frequently influenced by “obscure and

seemingly tangential factors” [14]. Therefore, many

researchers have used low-level micro-workloads to

isolate, exercise, and improve specific aspects of NFS.

Lever and Honeyman used a new sequential-write work-

load to measure and improve the Linux NFS client’s

write performance [28]. Ellard and Seltzer designed

a simple sequential-read workload to benchmark and

improve NFS’s readahead performance [14]. Gulati

et al. evaluated the performance of their NFSv4 proxy

12

using a locked-read micro-workload [23].

NFS has been widely deployed and studied. However,

many prior studies [12, 14, 28, 39] were about NFSv2

and NFSv3. NFSv4, its latest major version, is less

studied in the literature. Harrington et al. summarized

major NFS contributors’ efforts in testing the correct-

ness and performance of Linux NFSv4 [2]. Radkov

et al. compared the performance of NFSv4 and iSCSI

in IP-networked storage [37]. Batsakis and Burns ex-

tended the NFSv4 delegation model to improve the per-

formance and recoverability of NFS in computing clus-

ters [3]. Gulati et al. built a NFSv4 cache proxy, also

using delegations, to improve NFS performance in slow

networks [23].

NFSv4.1 is the latest minor version of NFSv4 and

its Linux implementation is still evolving [18]. To the

best of our knowledge, there is no prior comprehensive

benchmarking analysis of the Linux’s NFSv4.1 imple-

mentation.

9 Conclusions

We have presented a benchmarking study of Linux’s

NFSv4.1 performance. We provided insightful analy-

sis of the benchmarking results and identified the roots

of performance problems disclosed by simple micro-

workloads. We found that NFS’s interactions with other

OS components are complex and subtle. Specifically,

we found that the aggressive readahead algorithm in the

2.6.32el6 kernel can reduce random-read performance

by up to 80%. We identified a Bufferbloat-related Hash-

Cast networking problem that causes unfairness among

NFS clients. Hash-Cast influences not only NFS but

any data-intensive TCP applications using a multi-queue

NIC. We also noted that the TCP Nagle algorithm may

hurt the performance of latency-sensitive NFS work-

loads. We found that writing NFS files with O SYNC has

a side effect on the journaling of ext4, which wastes

more than 50% of disk write bandwidth in a sequential-

write workload. We also showed that NFS delegation

can save up to 90% of network traffic and significantly

boost performance. However, it incurs a delay of at least

100ms in case of conflicts.

These findings are not specific to our hardware setup.

The readahead algorithm, the O SYNC effect, and the

delegation mechanism are agnostic to network speed and

storage media type, whereas the Hash-Cast problem and

TCP Nagle algorithm are applicable to any distributed

applications based on TCP.

Future work. We are benchmarking NFSv4.1 us-

ing more sophisticated macro-workloads in 10GbE net-

works with SSD as the storage backend. We plan to

study the double readahead effect of NFS, where both

the client and the server are doing readahead. We also

plan to working on an efficient way to avoid the winner-

loser pattern by using on-demand explicit load balancing

of multiple tx-queues.

References

[1] Weston A. Adamson. NFSometer.

www.linux-nfs.org/wiki/index.php/

NFSometer.

[2] B. Harrington, A. Charbon, T. Reix, V. Roqueta, J.

B. Fields, T. Myklebust, and S. Jayaraman. NFSv4

test project. In Linux Simposium, pages 115–134,

2006.

[3] A. Batsakis and R. Burns. Cluster delegation:

High-performance, fault-tolerant data sharing in

NFS. In Proceedings of the 14th IEEE Inter-

national Symposium on High Performance Dis-

tributed Computing. IEEE, July 2005.

[4] B. Callaghan, B. Pawlowski, and P. Staubach. NFS

Version 3 Protocol Specification. Technical Report

RFC 1813, Network Working Group, June 1995.

[5] D. Capps. IOzone file system benchmark. www.

iozone.org.

[6] Ming Chen. nfsd: consider CLAIM FH when

handing out delegation. https://lkml.org/

lkml/2014/1/29/347.

[7] Jonathan Corbet. Network transmit queue limits.

http://lwn.net/Articles/454390/.

[8] Jonathan Corbet. TCP segmentation offloading.

http://lwn.net/Articles/9123/.

[9] Eric Dumazet. TSO packets automatic sizing.

http://lwn.net/Articles/564979/.

[10] M. Eisler, A. Chiu, and L. Ling. RPCSEC GSS

protocol specification. Technical Report RFC

2203, Network Working Group, September 1997.

[11] Mike Eisler. NFS version 4 and beyond, 2006.

LISA talk.

[12] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer.

Passive NFS tracing of email and research work-

loads. In Proceedings of the USENIX Confer-

ence on File and Storage Technologies (FAST), San

Francisco, CA, March 2003. USENIX Association.

[13] D. Ellard and M. Seltzer. New NFS tracing tools

and techniques for system analysis. In Proceedings

of the Annual USENIX Conference on Large Instal-

lation Systems Administration, San Diego, CA, Oc-

tober 2003. USENIX Association.

[14] D. Ellard and M. Seltzer. NFS tricks and bench-

marking traps. In Proceedings of the Annual

USENIX Technical Conference, FREENIX Track,

pages 101–114, San Antonio, TX, June 2003.

USENIX Association.

[15] Sorin Faibish. NFSv4.1 and pNFS ready for prime

time deployment, 2011.

13

[16] John Fastabend. Qdisc experiments at 10gbps. In

Linux Plumbers Conference, San Diego, CA, Au-

gust 2012.

[17] John Fastabend and Eric Dumazet. [BUG?] ixgbe:

only num online cpus() of the tx queues are en-

abled, 2014. http://comments.gmane.org/

gmane.linux.network/307532.

[18] Bruce Fields. NFSv4.1 server implementation.

http://goo.gl/vAqR0M.

[19] Filebench. http://filebench.sf.net.

[20] J. Gettys and K. Nichols. Bufferbloat: Dark buffers

in the Internet. Commun. ACM, 55(1):57–65, 2012.

[21] Sebastien Godard. iostat. http://linux.die.

net/man/1/iostat.

[22] LBNL Network Research Group. The TCP-

Dump/Libpcap site. www.tcpdump.org, Febru-

ary 2003.

[23] A. Gulati, M. Naik, and R. Tewari. Nache: De-

sign and Implementation of a Caching Proxy for

NFSv4. In Proceedings of the Fifth USENIX Con-

ference on File and Storage Technologies (FAST

’07), pages 199–214, San Jose, CA, February

2007. USENIX Association.

[24] D. Hildebrand and P. Honeyman. Exporting stor-

age systems in a scalable manner with pNFS. In

Proceedings of MSST, Monterey, CA, 2005. IEEE.

[25] Yury Izrailevsky. WebNFS Report. http://goo.

gl/wLYiUn, November 2009.

[26] R. J. La, J. Walrand, and V. Anantharam. Issues

in TCP Vegas. Electronics Research Laboratory,

College of Engineering, University of California,

1999.

[27] A. W. Leung, S. Pasupathy, G. Goodson, and E. L.

Miller. Measurement and analysis of large-scale

network file system workloads. In Proceedings of

the Annual USENIX Technical Conference, pages

213–226, Boston, MA, June 2008. USENIX Asso-

ciation.

[28] C. Lever and P. Honeyman. Linux NFS Client

Write Performance. In Proceedings of the Annual

USENIX Technical Conference, FREENIX Track,

pages 29–40, Monterey, CA, June 2002. USENIX

Association.

[29] Chuck Lever. Close-to-open cache consistency in

the linux NFS client. http://goo.gl/o9i0MM.

[30] Sam Liang and David Cheriton. TCP-RTM: Us-

ing TCP for real time multimedia applications. In

International Conference on Network Protocols,

2002.

[31] Alex McDonald. The background to NFSv4.1. ;lo-

gin: The USENIX Magazine, 37(1):28–35, Febru-

ary 2012.

[32] Paul E. McKenney. Stochastic fairness queueing.

In INFOCOM’90, pages 733–740. IEEE, 1990.

[33] Sun Microsystems. Cthon 2004 Test Suite. www.

connectathon.org/nfstests.html, 2008.

[34] Jorge Mora. Nfstest. http://goo.gl/7QBl7O.

[35] A. Phanishayee, E. Krevat, V. Vasudevan, D. G.

Andersen, G. R. Ganger, G. A. Gibson, and S. Se-

shan. Measurement and analysis of TCP through-

put collapse in cluster-based storage systems. In

Proceedings of the 6th USENIX Conference on File

and Storage Technologies (FAST’08), 2008.

[36] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt,

J. Keniston, and B. Chen. Locating system prob-

lems using dynamic instrumentation. In Proceed-

ings of the 2005 Linux Symposium, pages 49–64,

Ottawa, Canada, July 2005. Linux Symposium.

[37] P. Radkov, L. Yin, P. Goyal, P. Sarkar, and

P. Shenoy. A performance comparison of NFS and

iSCSI for IP-networked storage. In Proceedings of

the USENIX Conference on File and Storage Tech-

nologies (FAST), pages 101–114, San Francisco,

CA, March/April 2004. USENIX Association.

[38] Scott Rixner. Network virtualization: Breaking the

performance barrier. Queue, 6(1):37:36–37:ff, Jan

2008.

[39] D. Robinson. The advancement of NFS bench-

marking: SFS 2.0. In Proceedings of the

13th USENIX Systems Administration Conference

(LISA ’99), pages 175–185, Seattle, WA, Novem-

ber 1999. USENIX Association.

[40] S. Shepler and M. Eisler and D. Noveck. NFS Ver-

sion 4 Minor Version 1 Protocol. Technical Re-

port RFC 5661, Network Working Group, January

2010.

[41] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,

C. Beame, M. Eisler, and D. Noveck. NFS Version

4 Protocol. Technical Report RFC 3530, Network

Working Group, April 2003.

[42] Dan Siemon. Queueing in the Linux network stack.

Linux Journal, July 2013.

[43] SPEC. SPECsfs2008. www.spec.org/sfs2008,

2008.

[44] Sun Microsystems. NFS: Network file system pro-

tocol specification. Technical Report RFC 1094,

Network Working Group, March 1989.

[45] Vasily Tarasov, Dean Hildebrand, Geoff Kuenning,

and Erez Zadok. Virtual machine workloads: The

case for new benchmarks for NAS. In Proceed-

ings of the USENIX Conference on File and Stor-

age Technologies (FAST), San Jose, CA, February

2013. USENIX Association.

14

