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Abstract

Recently, power has emerged as a critical factor in de-
signing components of storage systems, especially for
power-hungry data centers. While there is some research
into power-aware storage stack components, there are no
systematic studies evaluating each component’s impact
separately. This paper evaluates the file system’s impact
on energy consumption and performance. We studied
several popular Linux file systems, with various mount
and format options, using the FileBench workload gen-
erator to emulate four server workloads: Web, database,
mail, and file server. In case of a server node consist-
ing of a single disk, CPU power generally exceeds disk-
power consumption. However, file system design, imple-
mentation, and available features have a significant effect
on CPU/disk utilization, and hence on performance and
power. We discovered that default file system options are
often suboptimal, and even poor. We show that a careful
matching of expected workloads to file system types and
options can improve power-performance efficiency by a
factor ranging from 1.05 to 9.4 times.

1 Introduction
Performance has a long tradition in storage research. Re-
cently, power consumption has become a growing con-
cern. Recent studies show that the energy used inside
all U.S. data centers is 1–2% of total U.S. energy con-
sumption [42], with more spent by other IT infrastruc-
tures outside the data centers [44]. Storage stacks have
grown more complex with the addition of virtualization
layers (RAID, LVM), stackable drivers and file systems,
virtual machines, and network-based storage and file sys-
tem protocols. It is challenging today to understand the
behavior of storage layers, especially when using com-
plex applications.

Performance and energy use have a non-trivial, poorly
understood relationship: sometimes they are opposites
(e.g., spinning a disk faster costs more power but im-
proves performance); but at other times they go hand in
hand (e.g., localizing writes into adjacent sectors can im-
prove performance while reducing the energy). Worse,
the growing number of storage layers further perturb ac-
cess patterns each time applications’ requests traverse the
layers, further obfuscating these relationships.

Traditional energy-saving techniques useright-sizing.
These techniques adjust node’s computational power to
fit the current load. Examples include spinning disks
down [12, 28, 30], reducing CPU frequencies and volt-
ages [46], shutting down individual CPU cores, and
putting entire machines into lower power states [13, 32].

Less work has been done onworkload-reductiontech-
niques: better algorithms and data-structures to improve
power/performance [14, 19, 24]. A few efforts focused
on energy-performance tradeoffs in parts of the storage
stack [8, 18, 29]. However, they were limited to one prob-
lem domain or a specific workload scenario.

Many factors affect power and performance in the stor-
age stack, especially workloads. Traditional file systems
and I/O schedulers were designed for generality, which
is ill-suited for today’s specialized servers with long-
running services (Web, database, email). We believe that
to improve performance and reduce energy use, custom
storage layers are needed for specialized workloads. But
before that, thorough systematic studies are needed to
recognize the features affecting power-performance un-
der specific workloads.

This paper studies the impact of server workloads
on both power and performance. We used the
FileBench [16] workload generator due to its flexibil-
ity, accuracy, and ability to scale and stress any server.
We selected FileBench’s Web, database, email, and file
server workloads as they represent most common server
workloads, yet they differ from each other. Modern stor-
age stacks consist of multiple layers. Each layer inde-
pendently affects the performance and power consump-
tion of a system, and together the layers make such in-
teraction rather complex. Here, we focused on the file
system layer only; to make this study a useful stepping
stone towards understanding the entire storage stack, we
did not use LVM, RAID, or virtualization. We experi-
mented with Linux’s four most popular and stable local
file systems: Ext2, Ext3, XFS, and Reiserfs; and we var-
ied several common format- and mount-time options to
evaluate their impact on power/performance.

We ran many experiments on a server-class machine,
collected detailed performance and power measurements,
and analyzed them. We found that different workloads,
not too surprisingly, have a large impact on system be-
havior. No single file system worked best for all work-
loads. Moreover, default file system format and mount
options were often suboptimal. Some file system features
helped power/performance and others hurt it. Our ex-
periments revealed a strong linearity between the power
efficiency and performance of a file system. Overall,
we found significant variations in the amount of useful
work that can be accomplished per unit time or unit en-
ergy, with possible improvements over default configura-
tions ranging from 5% to 9.4×. We conclude that long-
running servers should be carefully configured at instal-
lation time. For busy servers this can yield significant
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performance and power savings over time. We hope this
study will inspire other studies (e.g., distributed file sys-
tems), and lead to novel storage layer designs.

The rest of this paper is organized as follows. Sec-
tion 2 surveys related work. Section 3 introduces our
experimental methodology. Section 4 provides useful in-
formation about energy measurements. The bulk of our
evaluation and analysis is in Section 5. We conclude in
Section 6 and describe future directions in Section 7.

2 Related Work
Past power-conservation research for storage focused on
portable battery-operated computers [12, 25]. Recently,
researchers investigated data centers [9, 28, 43]. As our
focus is file systems’ power and performance, we discuss
three areas of related work that mainly cover both power
and performance: file system studies, lower-level storage
studies, and benchmarks commonly used to evaluate sys-
tems’ power efficiency.

File system studies. Disk-head seeks consume a large
portion of hard-disk energy [2]. A popular approach to
optimize file system power-performance is to localize on-
disk data to incur fewer head movements. Huang et al.
replicated data on disk and picked the closest replica to
the head’s position at runtime [19]. The Energy-Efficient
File System (EEFS) groups files with high temporal ac-
cess locality [24]. Essary and Amer developed predic-
tive data grouping and replication schemes to reduce head
movements [14].

Some suggested other file-system—level techniques
to reduce power consumption without degrading perfor-
mance. BlueFS is an energy-efficient distributed file sys-
tem for mobile devices [29]. When applications request
data, BlueFS chooses a replica that best optimizes energy
and performance. GreenFS is a stackable file system that
combines a remote network disk and a local flash-based
memory buffer to keep the local disk idling for as long as
possible [20]. Kothiyal et al. examined file compression
to improve power and performance [23].

These studies propose new designs for storage soft-
ware, which limit their applicability to existing systems.
Also, they often focus on narrow problem domains. We,
however, focus on servers, several common workloads,
and use existing unmodified software.

Lower-level storage studies. A disk drive’s platters
usually keep spinning even if there are no incoming I/O
requests. Turning the spindle motor off during idle pe-
riods can reduce disk energy use by 60% [28]. Sev-
eral studies suggest ways to predict or prolong idle pe-
riods and shut the disk down appropriately [10, 12]. Un-
like laptop and desktop systems, idle periods in server
workloads are commonly too short, making such ap-
proaches ineffective. This was addressed using I/O
off-loading [28], power-aware (sometimes flash-based)

caches [5, 49], prefetching [26, 30], and a combination
of these techniques [11, 43]. Massive Array of Idle Disks
(MAID) augments RAID technology with automatic shut
down of idle disks [9]. Pinheiro and Bianchini used the
fact that regularly only a small subset of data is accessed
by a system, and migrated frequently accessed data to
a small number of active disks, keeping the remaining
disks off [31]. Other approaches dynamically control the
platters’ rotation speed [35] or combine low- and high-
speed disks [8].

These approaches depend primarily on having or pro-
longing idle periods, which is less likely on busy servers.
For those, aggressive use of shutdown, slowdown, or
spin-down techniques can have adverse effects on per-
formance and energy use (e.g., disk spin-up is slow and
costs energy); such aggressive techniques can also hurt
hardware reliability. Whereas idle-time techniques are
complementary to our study, we examine file systems’
features that increase performance and reduce energy use
in activesystems.

Benchmarks and systematic studies. Researchers use
a wide range of benchmarks to evaluate the performance
of computer systems [39, 41] and file systems specifi-
cally [7, 16, 22, 40]. Far fewer benchmarks exist to de-
termine system power efficiency. The Standard Per-
formance Evaluation Corporation (SPEC) proposed the
SPECpowerssj benchmark to evaluate the energy effi-
ciency of systems [38]. SPECpowerssj stresses a Java
server with standardized workload at different load lev-
els. It combines results and reports the number of Java
operations per second per watt. Rivoire et al. used a large
sorting problem (guaranteed to exceed main memory) to
evaluate a system’s power efficiency [34]; they report the
number of sorted records per joule. We use similar met-
rics, but applied for file systems.

Our goal was to conduct a systematic power-
performance study of file systems. Gurumurthi et al.
carried out a similar study for various RAID configu-
rations [18], but focused on database workloads alone.
They noted that tuning RAID parameters affected power
and performance more than many traditional optimiza-
tion techniques. We observed similar trends, but for file
systems. In 2002, Bryant et al. evaluated Linux file sys-
tem performance [6], focusing on scalability and concur-
rency. However, that study was conducted on an older
Linux 2.4 system. As hardware and software change
so rapidly, it is difficult to extrapolate from such older
studies—another motivation for our study here.

3 Methodology
This section details the experimental hardware and soft-
ware setup for our evaluations. We describe our testbed
in Section 3.1. In Section 3.2 we describe our bench-
marks and tools used. Sections 3.3 and 3.4 motivate our
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selection of workloads and file systems, respectively.

3.1 Experimental Setup
We conducted our experiments on a Dell Pow-
erEdge SC1425 server consisting of 2 dual-core IntelR©

XeonTM CPUs at 2.8GHz, 2GB RAM, and two
73GB internal SATA disks. The server was run-
ning the CentOS 5.3 Linux distribution with kernel
2.6.18-128.1.16.el5.centos.plus. All the benchmarks
were executed on an external 18GB, 15K RPM AT-
LAS15K 18WLS Maxtor SCSI disk connected through
Adaptec ASC-39320D Ultra320 SCSI Card.

As one of our goals was to evaluate file systems’
impact on CPU and disk power consumption, we con-
nected the machine and the external disk to two separate
WattsUP Pro ES [45] power meters. This is an in-line
power meter that measures the energy drawn by a de-
vice plugged into the meter’s receptacle. The power me-
ter uses non-volatile memory to store measurements ev-
ery second. It has a 0.1 Watt-hour (1 Watt-hour = 3,600
Joules) resolution for energy measurements; the accuracy
is ±1.5% of the measured value plus a constant error of
±0.3 Watt-hours. We used awattsup Linux utility to
download the recorded data from the meter over a USB
interface to the test machine. We kept the temperature in
the server room constant.

3.2 Software Tools and Benchmarks
We usedFileBench[16], an application level workload
generator that allowed us to emulate a large variety of
workloads. It was developed by Sun Microsystems and
was used for performance analysis of Solaris operating
system [27] and in other studies [1, 17]. FileBench can
emulate different workloads thanks to its flexibleWork-
load Model Language(WML), used to describe a work-
load. A WML workload description is called apersonal-
ity. Personalities define one or more groups of file system
operations (e.g., read, write, append, stat), to be executed
by multiple threads. Each thread performs the group of
operations repeatedly, over a configurable period of time.
At the end of the run, FileBench reports the total num-
ber of performed operations. WML allows one to specify
synchronization points between threads and the amount
of memory used by each thread, to emulate real-world
application more accurately. Personalities also describe
the directory structure(s) typical for a specific workload:
average file size, directory depth, the total number of
files, and alpha parameters governing the file and direc-
tory sizes that are based on a gamma random distribution.

To emulate a real application accurately, one needs
to collect system call traces of an application and con-
vert them to a personality. FileBench includes several
predefined personalities—Web, file, mail and database
servers—which were created by analyzing the traces

of corresponding applications in the enterprise environ-
ment [16]. We used these personalities in our study.

We used Auto-pilot [47] to drive FileBench. We built
an Auto-pilot plug-in to communicate with the power
meter and modified FileBench to clear the two watt me-
ters’ internal memory before each run. After each bench-
mark run, Auto-Pilot extracts the energy readings from
both watt-meters. FileBench reports file system perfor-
mance in operations per second, which Auto-pilot col-
lects. We ran all tests at least five times and computed
the 95% confidence intervals for the mean operations
per second, and disk and CPU energy readings using the
Student’s-t distribution. Unless otherwise noted, the half
widths of the intervals were less than 5% of the mean—
shown as error bars in our bar graphs. To reduce the im-
pact of the watt-meter’s constant error (0.3 Watt-hours)
we increased FileBench’s default runtime from one to 10
minutes. Our test code, configuration files, logs, and re-
sults are available atwww.fsl.cs.sunysb.edu/docs/
fsgreen-bench/.

3.3 Workload Categories
One of our main goals was to evaluate the impact of dif-
ferent file system workloads on performance and power
use. We selected four common server workloads: Web
server, file server, mail server, and database server. The
distinguishing workload features were: file size distribu-
tions, directory depths, read-write ratios, meta-data vs.
data activity, and access patterns (i.e., sequential vs. ran-
dom vs. append). Table 1 summarizes our workloads’
properties, which we detail next.

Web Server. The Web server workload uses a read-
write ratio of 10:1, and reads entire files sequentially by
multiple threads, as if reading Web pages. All the threads
append 16KB to a common Web log, thereby contending
for that common resource. This workload not only ex-
ercises fast lookups and sequential reads of small-sized
files, but it also considers concurrent data and meta-data
updates into a single, growing Web log.

File Server. The file server workload emulates a server
that hosts home directories of multiple users (threads).
Users are assumed to access files and directories belong-
ing only to their respective home directories. Each thread
picks up a different set of files based on its thread id.
Each thread performs a sequence of create, delete, ap-
pend, read, write, and stat operations, exercising both the
meta-data and data paths of the file system.

Mail Server. The mail server workload (varmail) emu-
lates an electronic mail server, similar to Postmark [22],
but it is multi-threaded. FileBench performs a sequence
of operations to mimic reading mails (open, read whole
file, and close), composing (open/create, append, close,
and fsync) and deleting mails. Unlike the file server and
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Workload
Average Average Number I/O sizes Number of

R/W Ratio
file size directory depth of files read write append threads

Web Server 32KB 3.3 20,000 1MB - 16KB 100 10:1
File Server 256KB 3.6 50,000 1MB 1MB 16KB 100 1:2
Mail Server 16KB 0.8 50,000 1MB - 16KB 100 1:1
DB Server 0.5GB 0.3 10 2KB 2KB - 200 + 10 20:1

Table 1: FileBench workload characteristics. The databaseworkload uses 200 readers and 10 writers.
Web server workloads, the mail server workload uses a
flat directory structure, with all the files in one directory.
This exercises large directory support and fast lookups.
The average file size for this workload is 16KB, which is
the smallest amongst all other workloads. This initial file
size, however, grows later due to appends.

Database Server. This workload targets a specific class
of systems, calledonline transaction processing(OLTP).
OLTP databases handle real-time transaction-oriented
applications (e.g., e-commerce). The database emula-
tor performs random asynchronous writes, random syn-
chronous reads, and moderate (256KB) synchronous
writes to the log file. It launches 200 reader processes, 10
asynchronous writers, and a single log writer. This work-
load exercises large file management, extensive concur-
rency, and random reads/writes. This leads to frequent
cache misses and on-disk file access, thereby exploring
the storage stack’s efficiency for caching, paging, and
I/O.

3.4 File System and Properties
We ran our workloads on four different file systems:
Ext2, Ext3, Reiserfs, and XFS. We evaluated both the
default and variants of mount and format options for
each file system. We selected these file systems for their
widespread use on Linux servers and the variation in their
features. Distinguishing file system features were:

• B+/S+ Tree vs. linear fixed sized data structures
• Fixed block size vs. variable-sized extent
• Different allocation strategies
• Different journal modes
• Other specialized features (e.g., tail packing)

For each file system, we tested the impact of various
format and mount options that are believed to affect per-
formance. We considered two common format options:
block size and inode size. Large block sizes improve I/O
performance of applications using large files due to fewer
number of indirections, but they increase fragmentation
for small files. We tested block sizes of 1KB, 2KB, and
4KB. We excluded 8KB block sizes due to lack of full
support [15, 48]. Larger inodes can improve data local-
ity by embedding as much data as possible inside the in-
ode. For example, large enough inodes can hold small di-
rectory entries and small files directly, avoiding the need
for disk block indirections. Moreover, larger inodes help
storing the extent file maps. We tested the default (256B

and 128B for XFS and Ext2/Ext3, respectively) and 1KB
inode size for all file systems except Reiserfs, as it does
not explicitly have an inode object.

We evaluated various mount options:noatime, jour-
nal vs. no journal, and different journalling modes.
The noatime option improves performance in read-
intensive workloads, as it skips updating an inode’s last
access time. Journalling provides reliability, but incurs
an extra cost in logging information. Some file systems
support different journalling modes: data, ordered, and
writeback. The data journalling mode logs both data
and meta-data. This is the safest but slowest mode. Or-
dered mode (default in Ext3 and Reiserfs) logs only meta-
data, but ensures that data blocks are written before meta-
data. The writeback mode logs meta-data without order-
ing data/meta-data writes. Ext3 and Reiserfs support all
three modes, whereas XFS supports only the writeback
mode. We also assessed a few file-system specific mount
and format options, described next.

Ext2 and Ext3. Ext2 [4] and Ext3 [15] have been
the default file systems on most Linux distributions for
years. Ext2 divides the disk partition into fixed sized
blocks, which are further grouped into similar-sized
block groups. Each block group manages its own set of
inodes, a free data block bitmap, and the actual files’ data.
The block groups can reduce file fragmentation and in-
crease reference locality by keeping files in the same par-
ent directory and their data in the same block group. The
maximum block group size is constrained by the block
size. Ext3 has an identical on-disk structure as Ext2,
but adds journalling. Whereas journalling might degrade
performance due to extra writes, we found certain cases
where Ext3 outperforms Ext2. One of Ext2 and Ext3’s
major limitations is their poor scalability to large files
and file systems because of the fixed number of inodes,
fixed block sizes, and their simple array-indexing mech-
anism [6].

XFS. XFS [37] was designed for scalability: support-
ing terabyte sized files on 64-bit systems, an unlimited
number of files, and large directories. XFS employs
B+ trees to manage dynamic allocation of inodes, free
space, and to map the data and meta-data of files/directo-
ries. XFS stores all data and meta-data in variable sized,
contiguousextents. Further, XFS’s partition is divided
into fixed-sized regions calledallocation groups(AGs),
which are similar to block groups in Ext2/3, but are de-
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signed for scalability and parallelism. Each AG manages
the free space and inodes of its group independently; in-
creasing the number of allocation groups scales up the
number of parallel file system requests, but too many
AGs also increases fragmentation. The default AG count
value is 16. XFS creates a cluster of inodes in an AG as
needed, thus not limiting the maximum number of files.
XFS uses a delayed allocation policy that helps in getting
large contiguous extents, and increases the performance
of applications using large-sized files (e.g., databases).
However, this increases memory utilization. XFS tracks
AG free space using two B+ trees: the first B+ tree tracks
free space by block number and the second tracks by the
size of the free space block. XFS supports only meta-data
journalling (writeback). Although XFS was designed for
scalability, we evaluate all file systems using different file
sizes and directory depths. Apart from evaluating XFS’s
common format and mount options, we also varied its
AG count.

Reiserfs. The Reiserfs partition is divided into blocks
of fixed size. Reiserfs uses abalanced S+ tree[33] to
optimize lookups, reference locality, and space-efficient
packing. The S+ tree consists of internal nodes, format-
ted leaf nodes, and unformatted nodes. Each internal
node consists of key-pointer pairs to its children. The for-
matted nodes pack objects tightly, calleditems; each item
is referenced through a unique key (akin to an inode num-
ber). These items include:stat items(file meta-data),di-
rectory items(directory entries),indirect items(similar to
inode block lists), anddirect items(tails of files less than
4K). A formatted node accommodates items of different
files and directories. Unformatted nodes contain raw data
and do not assist in tree lookup. The direct items and the
pointers inside indirect items point to these unformatted
nodes. The internal and formatted nodes are sorted ac-
cording to their keys. As a file’s meta-data and data is
searched through the combined S+ tree using keys, Reis-
erfs scales well for a large and deep file system hierar-
chy. Reiserfs has a unique feature we evaluated calledtail
packing, intended to reduce internal fragmentation and
optimize the I/O performance of small sized files (less
than 4K). Tail-packing support is enabled by default, and
groups different files in the same node. These are refer-
enced using direct pointers, called the tail of the file. Al-
though the tail option looks attractive in terms of space
efficiency and performance, it incurs an extra cost during
reads if the tail is spread across different nodes. Simi-
larly, additional appends to existing tail objects lead to
unnecessary copy and movement of the tail data, hurting
performance. We evaluated all three journalling modes
of Reiserfs.

4 Energy Breakdown
Active vs. passive energy. Even when a server does not
perform any work, it consumes some energy. We call this
energyidle or passive. The file system selection alone
cannot reduce idle power, but combined with right-sizing
techniques, it can improve power efficiency by prolong-
ing idle periods. Theactivepower of a node is an ad-
ditional power drawn by the system when it performs
useful work. Different file systems exercise the system’s
resources differently, directly affecting active power. Al-
though file systems affect active energy only, users often
care about total energy used. Therefore, we report only
total power used.

Hard disk vs. node power. We collected power con-
sumption readings for the external disk drive and the test
node separately. We measured our hard disk’s idle power
to be 7 watts, matching its specification. We wrote a tool
that constantly performs direct I/O to distant disk tracks
to maximize its power consumption, and measured a
maximum power of 22 watts. However, the average disk
power consumed for our experiments was only 14 watts
with little variations. This is because the workloads ex-
hibited high locality, heavy CPU/memory use, and many
I/O requests were satisfied from caches. Whenever the
workloads did exercise the disk, its power consumption
was still small relative to the total power. Therefore, for
the rest of this paper, we report only total system power
consumption (disk included).

A node’s power consumption consists of its compo-
nents’ power. Our server’s measured idle-to-peak power
is 214–279W. The CPU tends to be a major contribu-
tor, in our case from 86–165W (i.e., Intel’s SpeedStep
technology). However, the behavior of power consump-
tion within a computer is complex due to thermal effects
and feedback loops. For example, our CPU’s core power
use can drop to a mere 27W if its temperature is cooled
to 50 ◦C, whereas it consumes 165W at a normal tem-
perature of76 ◦C. Motherboards today include dynamic
system and CPU fans which turn on/off or change their
speeds; while they reduce power elsewhere, the fans con-
sume some power themselves. For simplicity, our paper
reports only total system power consumption.

FS vs. other software power consumption. It is rea-
sonable to question how much energy does a file sys-
tem consume compared to other software components.
According to Almeida et al., a Web server saturated by
client requests spends 90% of the time in kernel space,
invoking mostly file system related system calls [3]. In
general, if a user-space program is not computationally
intensive, it frequently invokes system calls and spends
a lot of time in kernel space. Therefore, it makes sense
to focus the efforts on analyzing energy efficiency of file
systems. Moreover, our results in Section 5 support this
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fact: changing only the file system type can increase
power/performance numbers up to a factor of 9.

5 Evaluation

This section details our results and analysis. We abbre-
viated the terms Ext2, Ext3, Reiserfs, and XFS ase2,
e3, r, andx, respectively. File systems formatted with
block size of 1K and 2K are denotedblk1k andblk2k,
respectively;isz1k denotes 1K inode sizes;bg16k de-
notes 16K block group sizes;dtlg andwrbck denote
data and writeback journal modes, respectively;nolog
denotes Reiserfs’s no-logging feature; allocation group
count is abbreviated asagc followed by number of
groups (8, 32, etc.), no-atime is denoted asnoatm.

Section 5.1 overviews our metrics and terms. We de-
tail the Web, File, Mail, and DB workload results in Sec-
tions 5.2–5.5. Section 5.6 provides recommendations for
selecting and designing efficient file systems.

5.1 Overview

In all our tests, we collected two raw metrics: perfor-
mance (from FileBench), and the average power of the
machine and disk (from watt-meters). FileBench re-
ports file system performance under different workloads
in units of operations per second(ops/sec). As each
workload targets a different application domain, this met-
ric is not comparable across workloads: A Web server’s
ops/sec are not the same as, say, the database server’s.
Their magnitude also varies: the Web server’s rates num-
bers are two orders of magnitude larger than other work-
loads. Therefore, we report Web server performance in
1,000 ops/sec, and just ops/sec for the rest.

Electrical power, measured in Watts, is defined as the
rate at which electrical energy is transferred by a circuit.
Instead of reporting the raw power numbers, we selected
a derived metric calledoperations per joule(ops/joule),
which better explains power efficiency. This is defined
as the amount of work a file system can accomplish in 1
Joule of energy (1Joule = 1watt × 1sec). The higher
the value, the more power-efficient the system is. This
metric is similar to SPEC’s (ssj ops

watt
) metric, used by

SPECPowerssj2008 [38]. Note that we report the Web
server’s power efficiency in ops/joule, and use ops/kilo-
joule for the rest.

A system’s active power consumption depends on how
much it is being utilized by software, in our case a file
system. We measured that the higher the system/CPU
utilization, the greater the power consumption. We there-
fore ran experiments to measure the power consumption
of a workload at different load levels (i.e., ops/sec), for all
four file systems, with default format and mount options.
Figure 1 shows the average power consumed (in Watts)
by each file system, increasing Web server loads from
3,000 to 70,000 ops/sec. We found that all file systems
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Figure 1: Webserver: Mean power consumption by Ext2, Ext3,
Reiserfs, and XFS at different load levels. They-axis scale
starts at 220 Watts. Ext2 does not scale above 10,000 ops/sec.

Figure 2: Average CPU utilization for the Webserver workload

consumed almost the same amount of energy at a cer-
tain performance levels, but only a few could withstand
more load than the others. For example, Ext2 had a max-
imum of only 8,160 Web ops/sec with an average power
consumption of 239W, while XFS peaked at 70,992 op-
s/sec, with only 29% more power consumption. Figure 2
shows the percentages of CPU utilization, I/O wait, and
idle time for each file system at its maximum load. Ext2
and Reiserfs spend more time waiting for I/O than any
other file system, thereby performing less useful work, as
per Figure 1. XFS consumes almost the same amount of
energy as the other three file systems at lower load levels,
but it handles much higher Web server loads, winning
over others in both power efficiency and performance.
We observed similar trends for other workloads: only one
file system outperformed the rest in terms of both power
and performance, at all load levels. Thus, in the rest of
this paper we report only peak performance figures.

5.2 Webserver Workload
As we see in Figures 3(a) and 3(b), XFS proved to be
the most power- and performance-efficient file system.
XFS performed 9 times better than Ext2, as well as 2
times better than Reiserfs, in terms of both power and
performance. Ext3 lagged behind XFS by 22%. XFS
wins over all the other file systems as it handles concur-
rent updates to a single file efficiently, without incurring
a lot of I/O wait (Figure 2), thanks to its journal design.
XFS maintains an active item list, which it uses to pre-
vent meta-data buffers from being written multiple times
if they belong to multiple transactions. XFS pins a meta-
data buffer to prevent it from being written to the disk
until the log is committed. As XFS batches multiple up-
dates to a common inode together, it utilizes the CPU
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(b) File system energy efficiency for Webserver workload (inops/joule)
Figure 3: File system performance and energy efficiency under the Webserver workload

better. We observed a linear relationship between power-
efficiency and performance for the Web server workload,
so we report below on the basis of performance alone.

Ext2 performed the worst and exhibited inconsistent
behavior. Its standard deviation was as high as 80%,
even after 30 runs. We plotted the performance val-
ues on a histogram and observed that Ext2 had a non-
Gaussian (long-tailed) distribution. Out of 30 runs, 21
runs (70%) consumed less than 25% of the CPU, while
the remaining ones used up to 50%, 75%, and 100% of
the CPU (three runs in each bucket). We wrote a micro-
benchmark which ran for a fixed time period and ap-
pended to 3 common files shared between 100 threads.
We found that Ext3 performed 13% fewer appends than
XFS, while Ext2 was 2.5 times slower than XFS. We then
ran a modified Web server workload withonly reads and
no log appends. In this case, Ext2 and Ext3 performed
the same, with XFS lagging behind by 11%. This is
because XFS’slookup operation takes more time than
other file systems for deeper hierarchy (see Section 5.3).
As XFS handles concurrent writes better than the others,
it overcomes the performance degradation due to slow
lookups and outperforms in the Web server workload.
OSprof results [21] revealed that the average latency of
write super for Ext2 was 6 times larger than Ext3.
Analyzing the file systems’ source code helped explain
this inconsistency. First, as Ext2 does not have a journal,
it commits superblock and inode changes to the on-disk
image immediately, without batching changes. Second,
Ext2 takes the global kernel lock (aka BKL) while call-
ing ext2 write super and ext2 write inode,
which further reduce parallelism: all processes using
Ext2 which try to sync an inode or the superblock to disk
will contend with each other, increasing wait times sig-
nificantly. On the contrary, Ext3 batches all updates to the
inodes in the journal and only when the JBD layer calls

journal commit transaction are all the meta-
data updates actually synced to the disk (after committing
the data). Although journalling was designed primarily
for reliability reasons, we conclude that a careful journal
design can help some concurrent-write workloads akin to
LFS [36].

Reiserfs exhibits poor performance for different rea-
sons than Ext2 and Ext3. As Figures 3(a) and 3(b) show,
Reiserfs (default) performed worse than both XFS and
Ext3, but Reiserfs with thenotail mount option out-
performed Ext3 by 15% and the default Reiserfs by 2.25
times. The reason is that by default thetail option
is enabled in Reiserfs, which tries to pack all files less
than 4KB in one block. As the Web server has an aver-
age file size of just 32KB, it has many files smaller than
4KB. We confirmed this by runningdebugreiserfs
on the Reiserfs partition: it showed that many small files
had their data spread across the different blocks (packed
along with other files’ data). This resulted in more than
one data block access for each file read, thereby increas-
ing I/O, as seen in Figure 2. We concluded that unlike
Ext2 and Ext3, the default Reiserfs experienced a perfor-
mance hit due to its small file read design, rather than
concurrent appends. This demonstrates that even simple
Web server workload can still exercise different parts of
file systems’ code.

An interesting observation was that thenoatime
mount option improved the performance of Reiserfs by
a factor of 2.5 times. In other file systems, this option
did not have such a significant impact. The reason is that
thereiserfs dirty inode function, which updates
the access time field, acquires the BKL and then searches
for the stat item corresponding to the inode in its S+ tree
to update theatime. As the BKL is held while updat-
ing each inode’s access time in a path, it hurts parallelism
and reduces performance significantly. Also,noatime
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(a) Performance of file systems for the file server workload (in ops/sec)
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Figure 4: Performance and energy efficiency of file systems under the file server workload

boosts Reiserfs’s performance by this muchonly in the
read-intensive Web server workload.

Reducing the block-size during format generally hurt
performance, except in XFS. XFS was unaffected thanks
to its delayed allocation policy that allocates a large con-
tiguous extent, irrespective of the block size; this sug-
gests that modern file systems should try to pre-allocate
large contiguous extents in anticipation of files’ growth.
Reiserfs observed a drastic degradation of 2–3× after de-
creasing the block size from 4KB (default) to 2KB and
1KB, respectively. We found fromdebugreiserfs
that this led to an increase in the number of internal and
formatted nodes used to manage the file system names-
pace and objects. Also, the height of the S+ tree grew
from 4 to 5, in case of 1KB. As the internal and for-
matted nodes depend on the block size, a smaller block
size reduces the number of entries packed inside each of
these nodes, thereby increasing the number of nodes, and
increasing I/O times to fetch these nodes from the disk
during lookup. Ext2 and Ext3 saw a degradation of 2×

and 12%, respectively, because of the extra indirections
needed to reference a single file. Note that Ext2’s 2×

degradation was coupled with a high standard variation
of 20–49%, for the same reasons explained above.

Quadrupling the XFS inode size from 256B to 1KB
improved performance by only 8%. We found using
xfs db that a large inode allowed XFS to embed more
extent information and directory entries inside the inode
itself, speeding lookups. As expected, the data jour-
nalling mode hurt performance for both Reiserfs and
Ext3 by 32% and 27%, respectively. The writeback jour-
nalling mode of Ext3 and Reiserfs degraded performance
by 2× and 7%, respectively, compared to their default
ordered journalling mode. Increasing the block group
count of Ext3 and the allocation group count of XFS had
a negligible impact. The reason is that the Web server is

a read-intensive workload, and does not need to update
the different group’s metadata as frequently as a write-
intensive workload would.

5.3 File Server Workload

Figures 4(a) and 4(b) show that Reiserfs outperformed
Ext2, Ext3, XFS by 37%, 43%, and 91%, respectively.
Compared to the Web server workload, Reiserfs per-
formed better than all others, even with thetail op-
tion on. This is because the file server workload has
an average file size of 256KB (8 times larger than the
Web server workload): it does not have many small files
spread across different nodes, thereby showing no differ-
ence between Reiserfs’s (tail) andno-tail options.

Analyzing using OSprof revealed that XFS consumed
14% and 12% more time inlookup andcreate, re-
spectively, than Reiserfs. Ext2 and Ext3 spent 6% more
time in bothlookup andcreate than Reiserfs. To ex-
ercise only the lookup path, we executed a simple micro-
benchmark that only performed open and close opera-
tions on 50,000 files by 100 threads, and we used the
same fileset parameters as that of the file server workload
(see Table 1). We found that XFS performed 5% fewer
operations than Reiserfs, while Ext2 and Ext3 performed
close to Reiserfs. As Reiserfs packs data and meta-data
all in one node and maintains a balanced tree, it has faster
lookups thanks to improved spatial locality. Moreover,
Reiserfs stores objects by sorted keys, further speeding
lookup times. Although XFS uses B+ trees to maintain
its file system objects, its spatial locality is worse than
that of Reiserfs, as XFS has to perform more hops be-
tween tree nodes.

Unlike the Web server results, Ext2 performed better
than Ext3, and did not show high standard deviations.
This was because in a file server workload, each thread
works on an independent set of files, with little contention
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Figure 5: Performance and energy efficiency of file systems under the varmail workload

to update a common inode.

We discovered an interesting result when varying
XFS’s allocation group (AG) count from 8 to 128, in
powers of two (default is 16). XFS’s performance in-
creased from 4% to 34% (compared to AG of 8). But,
XFS’s power efficiency increased linearly only until the
AG count hit 64, after which the ops/kilojoule count
dropped by 14% (for AG count of 128). Therefore, XFS’
AG count exhibited anon-linear relationship between
power-efficiency and performance. As the number of
AGs increases, XFS’s parallelism improves too, boost-
ing performance even when dirtying each AG at a faster
rate. However, all AGs share a common journal: as the
number of AGs increases, updating the AG descriptors in
the log becomes a bottleneck; we see diminishing returns
beyond AG count of 64. Another interesting observa-
tion is that AG count increases had a negligible effect of
only 1% improvement for the Web server, but a signifi-
cant impact in file server workload. This is because the
file server has a greater number of meta-data activities
and writes than the Web server (see Section 3), thereby
accessing/modifying the AG descriptors frequently. We
conclude that the AG count is sensitive to the workload,
especially read-write and meta-data update ratios. Lastly,
the block group count increase in Ext2 and Ext3 had a
small impact of less than 1%.

Reducing the block size from 4KB to 2KB improved
the performance of XFS by 16%, while a further reduc-
tion to 1KB improved the performance by 18%. Ext2,
Ext3, and Reiserfs saw a drop in performance, for the
reasons explained in Section 5.2. Ext2 and Ext3 experi-
enced a performance drop of 8% and 3%, respectively,
when going from 4KB to 2KB; reducing the block size
from 2KB to 1KB degraded their performance further by
34% and 27%, respectively. Reiserfs’s performance de-
clined by a 45% and 75% when we reduced the block

size to 2KB and 1KB, respectively. This is due to the in-
creased number of internal node lookups, which increase
disk I/O as discussed in Section 5.2.

Theno-atime options did not affect performance or
power efficiency of any file system because this work-
load is not read-intensive and had a ratio of two writes
for each read. Changing the inode size did not have an ef-
fect on Ext2, Ext3, or XFS. As expected, data journalling
reduced the performance of Ext3 and Reiserfs by 10%
and 43%, respectively. Writeback-mode journalling also
showed a performance reduction by 8% and 4% for Ext3
and Reiserfs, respectively.

5.4 Mail Server

As seen in Figures 5(a) and 5(b), Reiserfs performed
the best amongst all, followed by Ext3 which differed
by 7%. Reiserfs beats Ext2 and XFS by 43% and 4×,
respectively. Although the mail server’s personality in
FileBench is similar to the file server’s, we observed dif-
ferences in their results, because the mail server workload
callsfsync after each append, which is not invoked in
the file server workload. Thefsync operation hurts the
non-journalling version of file systems: hurting Ext2 by
30% and Reiserfs-nolog by 8% as compared to Ext3 and
default Reiserfs, respectively. We confirmed this by run-
ning a micro-benchmark in FileBench which created the
same directory structure as the mail server workload and
performed the following sequence of operations: create,
append, fsync, open, append, and fsync. This showed
that Ext2 was 29% slower than Ext3. When we repeated
this after removing all fsync calls, Ext2 and Ext3 per-
formed the same. Ext2’s poor performance with fsync
calls is because itsext2 sync file call ultimately in-
vokesext2 write inode, which exhibits a larger la-
tency than thewrite inode function of other file sys-
tems. XFS’s poor performance was due to its slower
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(b) Energy efficiency of file systems for the OLTP workload (inops/kilojoule)
Figure 6: Performance and energy efficiency of file systems for the OLTP workload

lookup operations.
Figure 5(a) shows that Reiserfs withno-tail beats

all the variants of mount and format options, improving
over default Reiserfs by 29%. As the average file size
here was 16KB, theno-tail option boosted the per-
formance similar to the Web server workload.

As in the Web server workload, when the block size
was reduced from 4KB to 1KB, the performance of Ext2
and Ext3 dropped by 41% and 53%, respectively. Reis-
erfs’s performance dropped by 59% and 15% for 1KB
and 2KB, respectively. Although the performance of
Reiserfs decreased upon reducing the block size, the per-
centage degradation was less than seen in the Web and
file server. The flat hierarchy of the mail server attributed
to this reduction in degradation; as all files resided in one
large directory, the spatial locality of the meta data of
these files increases, helping performance a bit even with
smaller block sizes. Similar to the file server workload,
reduction in block size increased the overall performance
of XFS.

XFS’s allocation group (AG) count and the block
group count of Ext2 and Ext3 had minimal effect within
the confidence interval. Similarly, theno-atime op-
tion and inode size did not impact the efficiency of file
server significantly. The data journalling mode decreased
Reiserfs’s performance by 20%, but had a minimal effect
on Ext3. Finally, the writeback journal mode decreased
Ext3’s performance by 6%.

5.5 Database Server Workload (OLTP)

Figures 6(a) and 6(b) show that all four file systems
perform equally well in terms of both performance and
power-efficiency with the default mount/format options,
except for Ext2. It experiences a performance degrada-
tion of about 20% as compared to XFS. As explained in
Section 5.2, Ext2’s lack of a journal makes its random

write performance worse than any other journalled file
system, as they batch inode updates.

In contrast to other workloads, the performance ofall
file systems increases by a factor of around 2× if we de-
crease the block size of the file system from the default
4KB to 2KB. This is because the 2KB block size better
matches the I/O size of OLTP workload (see Table 1), so
every OLTP write request fits perfectly into the file sys-
tem’s block size. But, a file-system block size of 4KB
turns a 2KB write into a read-modify-write sequence, re-
quiring an extra read per I/O request. This proves an im-
portant point that keeping the file system block size close
to the workload’s I/O size can impact the efficiency of
the system significantly. OLTP’s performance also in-
creased when using a 1KB block size, but was slightly
lower than that obtained by 2KB block size, due to an
increased number of I/O requests.

An interesting observation was that on decreasing the
number of blocks per group from 32KB (default) to
16KB, Ext2’s performance improved by 7%. Moreover,
increasing the inode size up to 1KB improved perfor-
mance by 15% as compared to the default configuration.
Enlarging the inode size in Ext2 has an indirect effect
on the blocks per group: the larger the inode size, the
fewer the number of blocks per group. A 1KB inode size
resulted in 8KB blocks per group, thereby doubling the
number of block groups and increasing the performance
as compared to thee2-bg16K case. Varying the AG
count had a negligible effect on XFS’s numbers. Unlike
Ext2, the inode size increase did not affect any other file
system.

Interestingly, we observed that the performance of
Reiserfs increased by 30% on switching from the default
ordered mode to the data journalling mode. In data jour-
nalling mode as all the data is first written to the log,
random writes become logically sequential and achieve
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FS
Option Webserver Fileserver Varmail Database

Type Name Perf. Pow. Perf. Pow. Perf. Pow. Perf. Pow.

Ext2

mount noatime -37%† -35% - - - - - -
format blk1k -64%† -65% -34% -35% -41% -41% +98% +100%

blk2k -65% -65% -8% -9% -17% -18% +136% +137%
isz1k -34%† -35% - - - - +15% +16%
bg16k +60% † +53% - - +6% +5% +7% +7%

Ext3

mount noatime +4% +5% - - - - - -
dtlg -27% -23% -10% -5% - - -11% -13%

wrbck -63% -57% -8% -9% -6% -5% -5% -5%
format blk1k -34% -30% -27% -28% -53% -53% +81% +81%

blk2k -12% -11% - - -30% -31% +98% +97%
isz1k - - - - +8% +8% - -
bg16k - - - - -4% -5% -8% -9%

Reiserfs

mount noatime +149% +119% - - +5% +5% - -
notail +128% +96% - - +29% +28% - -
nolog - - - - -8% -8% - -
wrbck -7% -7% -4% -7% - - - -
dtlg -32% -29% -43% -42% -20% -21% +30% +29%

format blk1k -73% -70% -74% -74% -59% -58% +80% +80%
blk2k -51% -47% -45% -45% -15% -16% +92% +91%

XFS

mount noatime - - - - - - - -
format blk1k - - +18% +17% +27% +17% +101% +100%

blk2k - - +16% +15% +18% +17% +101% +99%
isz1k +8% +6% - - - - - -
agcnt8 - - -4% -5% - - - -
agcnt32 - - - - - - - -
agcnt64 - - +23% +25% - - - -
agcnt128 - - +29% +8% - - - -

Table 2: File systems’ performance and power, varying options, relative to the default ones for each file system. Improvements are
highlighted in bold. A† denotes the results with coefficient of variation over 40%. Adash signifies statistically indistinguishable
results.
better performance than the other journalling modes.

In contrast to the Web server workload, the
no-atime option does not have any effect on the perfor-
mance of Reiserfs, although the read-write ratio is 20:1.
This is because the database workload consists of only 10
large files and hence the meta-data of these small number
of files (i.e., stat items) accommodate in a few formatted
nodes as compared to the Web server workload which
consists of 20,000 files with their meta-data scattered
across multiple formatted nodes. Reiserfs’no-tail op-
tion had no effect on the OLTP workload due to the large
size of its files.

5.6 Summary and Recommendations
We now summarize the combined results of our study.
We then offer advice to server operators, as well as de-
signers of future systems.

Staying within a file system type. Switching to a dif-
ferent file system type can be a difficult decision, es-
pecially in enterprise environments where policies may
require using specific file systems or demand extensive
testing before changing one. Table 2 compares the power

efficiency and performance numbers that can be achieved
while staying within a file system; each cell is a percent-
age of improvement (plus sign and bold font), or degra-
dation (minus sign) compared to thedefault format and
mount options for that file system. Dashes denote results
that were statistically indistinguishable from default. We
compare to the default case because file systems are often
configured with default options.

Format and mount options represent different levels of
optimization complexity. Remounting a file system with
new options is usually seamless, while reformatting ex-
isting file systems requires costly data migration. Thus,
we group mount and format options together.

From Table 2 we conclude that often there is a better
selection of parameters than the default ones. A care-
ful choice of file system parameters cuts energy use in
half and more than doubles the performance (Reiserfs
with no-tail option). On the other hand, a careless
selection of parameters may lead to serious degradations:
up to 64% drop in both energy and performance (e.g.,
legacy Ext2 file systems with 1K block size). Until Oc-
tober 1999,mkfs.ext2used 1KB block sizes by default.
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File systems formatted prior to the time that Linux ven-
dors picked up this change, still use small block sizes:
performance-power numbers of a Web-server running on
top of such a file system are 65% lower than today’s de-
fault and over 4 times worse than best possible.

Given Table 2, we feel that even moderate improve-
ments are worth a costly file system reformatting, be-
cause the savings accumulate for long-running servers.

Selecting the most suitable file system.When users
can change to any file system, or choose one initially,
we offer Table 3. For each workload we present the
most power-performance efficient file system and its pa-
rameters. We also show the range of improvements in
both ops/sec and ops/joule as compared to the best and
worst defaultfile systems. From the table we conclude
that it is often possible to improve the efficiency by at
least 8%. For the file server workload, where the de-
fault Reiserfs configuration performs the best, we ob-
serve a performance boost of up to 2× as compared to
the worst default file system (XFS). As seen in Figure 5,
for mail server workload Reiserfs withno-tail im-
proves the efficiency by 30% over default Reiserfs (best
default), and by 5× over default XFS (worst default). For
the database workload, XFS with a block size of 2KB
improved the efficiency of the system by at least two-
fold. Whereas in most cases, performance and energy
improved by nearly the same factor, in XFS they did not:
for the Webserver workload, XFS with 1K inode sizes
increased performance by a factor of 9.4 and energy im-
proved by a factor of 7.5.

Some file system parameters listed in Table 2 can be
combined, possibly yielding cumulative improvements.
We analyzed several such combinations and concluded
that each case requires careful investigation. For exam-
ple, Reiserfs’snotail andnoatime options, indepen-
dently, improved the Webserver’s performance by 149%
and 128%, respectively; but their combined effect only
improved performance by 155%. The reason for this
was that both parameters affected the same performance
component—wait time—either by reducing BKL con-
tention slightly or by reducing I/O wait time. However,
the CPU’s utilization remained high and dominated over-
all performance. On the other hand, XFS’sblk2k and
agcnt64 format options, which improved performance
by 18% and 23%, respectively—combined together to
yield a cumulative improvement of 41%. The reason here
is that these were options which affected different code
paths without having other limiting factors.

Selecting file system features for a workload. We of-
fer recommendations to assist in selecting the best file
system feature(s) for specific workloads. These guide-
line can also help future file system designers.

Server Recom. FS Ops/Sec Ops/Joule
Web x-isz1k 1.08–9.4× 1.06–7.5×
File r-def 1.0–1.9× 1.0–2.0×
Mail r-notail 1.3–5.8× 1.3–5.7×
DB x-blk2k 2–2.4× 2–2.4×

Table 3: Recommended file systems and their parameters for
our workloads. We provide the range of performance and
power-efficiency improvements achieved compared to the best
and the worst default configured file systems.

• File size: If the workload generates or uses files
with an average file size of a few 100KB, we rec-
ommend to use fixed sized data blocks, addressed
by a balanced tree (e.g., Reiserfs). Large sized files
(GB, TB) would benefit from extent-based balanced
trees with delayed allocation (e.g., XFS). Packing
small files together in one block (e.g., Reiserfs’s tail-
packing) is not recommended, as it often degrades
performance.

• Directory depth: Workloads using a deep directory
structure should focus on faster lookups using intel-
ligent data structures and mechanisms. One recom-
mendation is to localize as much data together with
inodes and directories, embedding data into large in-
odes (XFS). Another is to sort all inodes/names and
provide efficient balanced trees (e.g., XFS or Reis-
erfs).

• Access pattern and parallelism: If the workload
has a mix of read, write, and metadata operations, it
is recommended to use at least 64 allocation groups,
each managing their own group and free data allo-
cation independently, to increase parallelism (e.g.,
XFS). For workloads having multiple concurrent
writes to the same file(s), we recommend to switch
on journalling, so that updates to the same file sys-
tem objects can be batched together. We recom-
mend turning offatime updates for read-intensive
operations, if the workload does not care about
access-times.

6 Conclusions

Proper benchmarking and analysis are tedious, time-
consuming tasks. Yet their results can be invaluable for
years to come. We conducted a comprehensive study of
file systems on modern systems, evaluated popular server
workloads, and varied many parameters. We collected
and analyzed performance and power metrics.

We discovered and explained significant variations in
both performance and energy use. We found that there
are no universally good configurations for all workloads,
and we explained complex behavior that go against com-
mon conventions. We concluded that default file system
types and options are often suboptimal: simple changes
within a file system, like mount options, can improve
power/performance from 5% to 149%; and changing for-
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mat options can boost the efficiency from 6% to 136%.
Switching to a different file system can result in improve-
ments ranging from 2 to 9 times.

We recommend that servers be tested and optimized
for expected workloads before used in production. En-
ergy technologies lag far behind computing speed im-
provements. Given the long-running nature of busy Inter-
net servers, software-based optimization techniques can
have significant, cumulative long-term benefits.

7 Future Work
We plan to expand our study to include less mature file
systems (e.g., Ext4, Reiser4, and BTRFS), as we believe
they have greater optimization opportunities. We are cur-
rently evaluating power-performance of network-based
and distributed file systems (e.g., NFS, CIFS, and Lus-
tre). Those represent additional complexity: protocol de-
sign, client vs. server implementations, and network soft-
ware and hardware efficiency. Early experiments com-
paring NFSv4 client/server OS implementations revealed
performance variations as high as 3×.

Computer hardware changes constantly—e.g., adding
more cores, and supporting more energy-saving features.
As energy consumption outside of the data center ex-
ceeds that inside [44], we are continually repeating our
studies on a range of computers spanning several years
of age. We also plan to conduct a similar study on
faster solid-state disks, and machines with more ad-
vanced DVFS support.

Our long-term goal is to develop custom file systems
that best match a given workload. This could be bene-
ficial because many application designers and adminis-
trators know their data set and access patterns ahead of
time, allowing storage stacks designs with better cache
behavior and minimal I/O latencies.

Acknowledgments. We thank the anonymous Usenix
FAST reviewers and our shepherd, Steve Schlosser, for
their helpful comments. We would also like to thank
Richard Spillane, Sujay Godbole, and Saumitra Bhan-
age for their help. This work was made possible in part
thanks to NSF awards CCF-0621463 and CCF-0937854,
an IBM Faculty award, and a NetApp gift.

References
[1] A. Ermolinskiy and R. Tewari. C2Cfs: A Collective

Caching Architecture for Distributed File Access. Tech-
nical Report UCB/EECS-2009-40, University of Califor-
nia, Berkeley, 2009.

[2] M. Allalouf, Y. Arbitman, M. Factor, R. I. Kat, K. Meth,
and D. Naor. Storage Modeling for Power Estimation. In
Proceedings of the Israeli Experimental Systems Confer-
ence (SYSTOR ’09), Haifa, Israel, May 2009. ACM.

[3] J. Almeida, V. Almeida, and D. Yates. Measuring the
Behavior of a World-Wide Web Server. Technical report,
Boston University, Boston, MA, USA, 1996.

[4] R. Appleton. A Non-Technical Look Inside the Ext2 File
System.Linux Journal, August 1997.

[5] T. Bisson, S.A. Brandt, and D.D.E. Long. A Hybrid Disk-
Aware Spin-Down Algorithm with I/O Subsystem Sup-
port. In IEEE 2007 Performance, Computing, and Com-
munications Conference, 2007.

[6] R. Bryant, R. Forester, and J. Hawkes. Filesystem
Performance and Scalability in Linux 2.4.17. InPro-
ceedings of the Annual USENIX Technical Conference,
FREENIX Track, pages 259–274, Monterey, CA, June
2002. USENIX Association.

[7] D. Capps. IOzone Filesystem Benchmark.www.
iozone.org/, July 2008.

[8] E. Carrera, E. Pinheiro, and R. Bianchini. Conserving
Disk Energy in Network Servers. In17th International
Conference on Supercomputing, 2003.

[9] D. Colarelli and D. Grunwald. Massive Arrays of Idle
Disks for Storage Archives. InProceedings of the 2002
ACM/IEEE conference on Supercomputing, pages 1–11,
2002.

[10] M. Craven and A. Amer. Predictive Reduction of Power
and Latency (PuRPLe). InProceedings of the 22nd
IEEE/13th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSST’05), pages 237–244,
Washington, DC, USA, 2005. IEEE Computer Society.

[11] Y. Deng and F. Helian. EED: Energy Efficient Disk Drive
Architecture.Information Sciences, 2008.

[12] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the
Power-Hungry Disk. InProceedings of the 1994 Winter
USENIX Conference, pages 293–306, 1994.

[13] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-
Efficient Server Clusters. InProceedings of the 2nd Work-
shop on Power-Aware Computing Systems, pages 179–
196, 2002.

[14] D. Essary and A. Amer. Predictive Data Grouping: Defin-
ing the Bounds of Energy and Latency Reduction through
Predictive Data Grouping and Replication.ACM Trans-
actions on Storage (TOS), 4(1):1–23, May 2008.

[15] ext3.http://en.wikipedia.org/wiki/Ext3.
[16] FileBench, July 2008. www.solarisinternals.

com/wiki/index.php/FileBench.
[17] A. Gulati, M. Naik, and R. Tewari. Nache: Design and

Implementation of a Caching Proxy for NFSv4. InPro-
ceedings of the Fifth USENIX Conference on File and
Storage Technologies (FAST ’07), pages 199–214, San
Jose, CA, February 2007. USENIX Association.

[18] S. Gurumurthi, J. Zhang, A. Sivasubramaniam, M. Kan-
demir, H. Franke, N. Vijaykrishnan, and M. J. Irwin. In-
terplay of Energy and Performance for Disk Arrays Run-
ning Transaction Processing Workloads. InIEEE Inter-
national Symposium on Performance Analysis of Systems
and Software, pages 123–132, 2003.

[19] H. Huang, W. Hung, and K. Shin. FS2: Dynamic Data
Replication in Free Disk Space for Improving Disk Per-
formance and Energy Consumption. InProceedings of
the 20th ACM Symposium on Operating Systems Princi-
ples (SOSP ’05), pages 263–276, Brighton, UK, October
2005. ACM Press.

13



[20] N. Joukov and J. Sipek. GreenFS: Making Enterprise
Computers Greener by Protecting Them Better. InPro-
ceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008 (EuroSys 2008),
Glasgow, Scotland, April 2008. ACM.

[21] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and
E. Zadok. Operating System Profiling via Latency Anal-
ysis. InProceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI 2006), pages
89–102, Seattle, WA, November 2006. ACM SIGOPS.

[22] J. Katcher. PostMark: A New Filesystem Benchmark.
Technical Report TR3022, Network Appliance, 1997.
www.netapp.com/tech_library/3022.html.

[23] R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok. En-
ergy and Performance Evaluation of Lossless File Data
Compression on Server Systems. InProceedings of the
Israeli Experimental Systems Conference (ACM SYSTOR
’09), Haifa, Israel, May 2009. ACM.

[24] D. Li. High Performance Energy Efficient File Storage
System. PhD thesis, Computer Science Department, Uni-
versity of Nebraska, Lincoln, 2006.

[25] K. Li, R. Kumpf, P. Horton, and T. Anderson. A Quan-
titative Analysis of Disk Drive Power Management in
Portable Computers. InProceedings of the 1994 Winter
USENIX Conference, pages 279–291, 1994.

[26] A. Manzanares, K. Bellam, and X. Qin. A Prefetching
Scheme for Energy Conservation in Parallel Disk Sys-
tems. InProceedings of the IEEE International Sym-
posium on Parallel and Distributed Processing (IPDPS
2008), pages 1–5, April 2008.

[27] R. McDougall, J. Mauro, and B. Gregg.Solaris Perfor-
mance and Tools. Prentice Hall, New Jersey, 2007.

[28] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-
loading: practical power management for enterprise stor-
age. InProceedings of the 6th USENIX Conference on
File and Storage Technologies (FAST 2008), 2008.

[29] E. B. Nightingale and J. Flinn. Energy-Efficiency and
Storage Flexibility in the Blue File System. InProceed-
ings of the 6th Symposium on Operating Systems Design
and Implementation (OSDI 2004), pages 363–378, San
Francisco, CA, December 2004. ACM SIGOPS.

[30] A. E. Papathanasiou and M. L. Scott. Increasing Disk
Burstiness for Energy Efficiency. Technical Report 792,
University of Rochester, 2002.

[31] E. Pinheiro and R. Bianchini. Energy Conservation Tech-
niques for Disk Array-Based Servers. InProceedings
of the 18th International Conference on Supercomputing
(ICS 2004), pages 68–78, 2004.

[32] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load
Balancing and Unbalancing for Power and Performance
in Cluster-Based Systems. InInternational Conference
on Parallel Architectures and Compilation Techniques,
Barcelona, Spain, 2001.

[33] H. Reiser. ReiserFS v.3 Whitepaper.http://web.
archive.org/web/20031015041320/http:
//namesys.com/.

[34] S. Rivoire, M. A. Shah, P. Ranganathan, and
C. Kozyrakis. JouleSort: A Balanced Energy-Efficiency
Benchmark. InProceedings of the ACM SIGMOD
International Conference on Management of Data
(SIGMOD), Beijing, China, June 2007.

[35] S. Gurumurthi and A. Sivasubramaniam and M. Kan-
demir and H. Franke. DRPM: Dynamic Speed Control
for Power Management in Server Class Disks. InPro-
ceedings of the 30th annual international symposium on
Computer architecture, pages 169–181, 2003.

[36] M. I. Seltzer. Transaction Support in a Log-Structured
File System. InProceedings of the Ninth International
Conference on Data Engineering, pages 503–510, Vi-
enna, Austria, April 1993.

[37] SGI. XFS Filesystem Structure. http:
//oss.sgi.com/projects/xfs/papers/
xfs_filesystem_structure.pdf.

[38] SPEC. SPECpowerssj2008 v1.01.www.spec.org/
power_ssj2008/.

[39] SPEC. SPECweb99.www.spec.org/web99, Octo-
ber 2005.

[40] SPEC. SPECsfs2008.www.spec.org/sfs2008,
July 2008.

[41] The Standard Performance Evaluation Corporation.
SPEC HPC Suite.www.spec.org/hpc2002/, Au-
gust 2004.

[42] U.S. Environmental Protection Agency. Report to
Congress on Server and Data Center Energy Efficiency.
Public Law 109-431, August 2007.

[43] J. Wang, H. Zhu, and Dong Li. eRAID: Conserving En-
ergy in Conventional Disk-Based RAID System.IEEE
Transactions on Computers, 57(3):359–374, March 2008.

[44] D. Washburn. More Energy Is Consumed Outside Of
The Data Center, 2008. www.forrester.com/
Role/Research/Workbook/0,9126,47980,
00.html.

[45] Watts up? PRO ES Power Meter. www.
wattsupmeters.com/secure/products.php.

[46] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. InProceedings of
the 1st USENIX conference on Operating Systems Design
and Implementation, 1994.

[47] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and
E. Zadok. Auto-pilot: A Platform for System Software
Benchmarking. InProceedings of the Annual USENIX
Technical Conference, FREENIX Track, pages 175–187,
Anaheim, CA, April 2005. USENIX Association.

[48] OSDIR mail archive for XFS.http://osdir.com/
ml/file-systems.xfs.general/2002-06/
msg00071.html.

[49] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou,
and P. Cao. Reducing Energy Consumption of Disk
Storage Using Power-Aware Cache Management. In
Proceedings of the 10th International Symposium on
High-Performance Computer Architecture, pages 118–
129, 2004.

14


