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Abstract
Most storage systems come with large set of param-

eters to directly or indirectly control a specific set of
metrics that may include performance, energy, etc. Of-
ten, storage systems are deployed with default config-
urations, rendering them sub-optimal. Finding optimal
configurations is difficult due to the numerous combina-
tions of parameters and parameter sensitivity to work-
loads and deployed environments. Previous research
on parameter optimization was either limited to nar-
row problems or not widely applicable to storage stack
parameter optimization in general. Based on promis-
ing early results, we propose using meta-heuristic tech-
niques such as genetic algorithms to efficiently find near-
optimal configurations for storage systems.

1 Introduction
Modern storage systems are often characterized by mul-
tiple connected hardware units with different software
versions running user application workloads. There are
many user controlled parameters at every layer that af-
fect performance, energy, and more. Often, these sys-
tems are deployed with default settings that directly
come from the vendor mostly due to two reasons: (1)
administrators cannot be expected to know every pa-
rameter’s effect across multiple layers and (2) vendors’
default configurations are trusted to be “good enough.”
We showed previously that even a tiny set of parameter
changes can lead to multi-fold difference in terms of per-
formance and energy [12]. As Moore’s law has slowed
down, it is more important to squeeze every bit of per-
formance out of deployed systems.

Finding optimal configurations is challenging. The
first problem is the sheer size of the parameter space
to try. For instance, we considered a storage system
with NFS, and included only 18 useful tunable param-
eters (NFS version, r/wsize, a/sync, no /wdelay, etc.).
Based on their boolean, integer, or discrete values, there
are around 1018 configurations to try. Such numbers
show that it is impossible to exhaustively search these
spaces even for a small set of parameters. Simple ran-
dom sampling techniques do not scale in these large
spaces. We need efficient and practical techniques to
search the space.

The second problem is the optimization point’s sensi-
tivity to the environment and workload. Some parame-
ters are important to optimize; others have insignificant
impact and are a waste to try; and some are highly corre-

lated with others and such dependencies must be discov-
ered. The set of parameters that affect performance de-
pends heavily on the combination of hardware, software,
and workloads. Even a small change to one part of the
environment can deviate the system away from its op-
timal performance. This problem results in a complex,
very large, multi-dimensional search space with many
suboptimal local maxima.

Related Work. Existing research in this field of op-
timization focuses on specific problems or uses meth-
ods that do not scale with the parameter space. Wang
et al. investigated the application of a machine learning
(ML) based methods for black-box storage device mod-
eling and prediction [13]. The quality of ML models de-
pends heavily on the amount and quality of training data
which is either not available or difficult to generate for
large spaces. Others including our group used Control
Theory (CT) [9] to model energy consumption and per-
formance of computing systems and found several prob-
lems. Alas, CT is ineffective for non-linear systems with
non-numeric parameters. Like ML, CT (and variants we
investigated) also requires training data and often handle
only a small number of parameters.

It is impractical to manually explore large parameter
spaces for optimizing storage systems. We propose to
use Meta-heuristic (MH) stochastic search optimization
techniques [11] to address this problem. Though the ap-
plication of MH is not completely new in systems, their
usage has been confined to building cost-efficient design
and management solutions for storage systems [2, 4, 7].
To our best knowledge, MH is not used in parametric op-
timization of storage systems for IO performance. Based
on promising early results, we believe that MH tech-
niques have the potential to solve a wide range of storage
system parameter optimization problems efficiently.

2 Background
Searching Large and Complex Spaces. Our search
space has three unique and challenging properties: (1) It
is very large: exploring even a major fraction exhaus-
tively is impossible. A human expert cannot know where
to search because people have specialized as experts
(e.g., database vs. networking experts). (2) The space
is very sparse. A vast majority of parameter combi-
nations leads to bad configurations with poor results.
Good search techniques must avoid these vast regions of
“dead” search space: pure random search is a poor strat-
egy. (3) It contains many local maxima that sometimes
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cluster together. Traditional search techniques, such as
Hill Climbing, try to quickly walk up to the top of a
maxima—but often get stuck at local maxima, missing
out better maxima elsewhere.

Meta-heuristic (MH) [11] search and optimization
algorithms are a class of algorithms including Evolu-
tionary Algorithms (EAs) [5, 6], Simulated Annealing
(SA) [8], Particle Swarm Optimization, Tabu Search,
Random Restart Hill Climbing, Memetic Algorithms,
and variants thereof. MHs largely vary in two key
properties: exploration vs. exploitation. (1) Explo-
ration is how much the technique searches the space
randomly. This often includes a combination of pure
and guided random search in a given neighborhood—
sometimes called a Monte Carlo process. (2) Exploita-
tion is how much the technique leverages its neighbor-
hood. When in a certain configuration, we try to find
nearby better ones.

MH techniques have a small number of configurable
parameters to guide the search technique more ef-
fectively. For instance, GAs have population sizes,
crossover methods, and mutation rates to set. No single
technique with specific properties can suit all environ-
ments and workloads. Still, we believe it is more effec-
tive to tune the fewer GA parameters than the numerous
parameters of storage systems.

Genetic Algorithms. We explored a subclass of MHs
called Evolutionary Algorithms (EAs), specifically Ge-
netic Algorithms (GAs). Carefully used, GAs (and other
MHs) have the ability to search large spaces very rapidly
and zoom in on the right set of parameters and their val-
ues with the best fitness (e.g., performance) in a given
environment. Theory developed by Holland [6] suggests
that large search spaces can be reduced exponentially by
finding dependent parameters and their values that go
well together, and considering them as one.

GAs have several traits taken directly from nature and
define nine key terms: (1) Gene represents a single con-
figuration parameter, such as the number of threads a
Mail server uses. A specific value of a gene is an al-
lele. Genes can be of any size: a single bit can repre-
sent a Boolean choice; 8 bits can represent a numeric
value from 0–256; or 2 bits can represent a choice be-
tween four file systems. (2) Chromosome (or DNA)
is the schema that defines a configuration. A configu-
ration is defined as a precise series of genes that code
for various traits (e.g., hair color or amount of RAM).
(3) Population is a set of unique configurations (chro-
mosome instances) that are being evaluated. A popu-
lation can grow or shrink over time. (4) Environment
includes the underlying storage hardware, software and
configuration, and the workloads being exercised. Envi-
ronments change over time: software is upgraded, hard-

ware wears out, and workloads change too. (5) Fitness:
each configuration in a population is evaluated for its fit-
ness in a given environment. We can define fitness as I/O
throughput, CPU speed, energy used, and even complex
cost functions [10] such as reliability, consistency, secu-
rity, weighted combinations of these, etc. (6) Genera-
tion: the fitness of each population member is evaluated
in the given environment. This is a single generation.
(7) Selection: once the fitness of a population is eval-
uated, a selection process begins to determine the next
generation. Key to GAs is their ability to reinforce bet-
ter configurations: they live on and multiply in the next
generation; and those that did poorly are discarded. Re-
inforcement is said to enable GAs to search vast spaces
exponentially [6]. (8) Crossover: in Earth biology, the
male and female of the species combine their respective
genes in one or more offspring. This is called crossover
and governs the GA’s exploitation aspect. Crossover en-
sures that we continue to exploit configurations similar
to the successful ones we already selected. (9) Muta-
tion: in Earth biology, genes mutate regularly. Mutation
modifies a gene randomly. Without mutation, a popula-
tion is doomed to be stuck in exploring a narrow neigh-
borhood and never stumble upon a much better neigh-
borhood to explore. In nature, mutations often follow
the power law: most are small but a few can be large [1].
Large mutations are important to allow a population to
explore well outside its immediate neighborhood.

GA operation. A genetic algorithm process begins by
selecting an initial population, which can be seeded with
already known reasonable default configurations. An en-
vironment is setup: storage hardware, software, and the
workload to evaluate. The fitness (e.g., performance, en-
ergy) of each population member is then evaluated. Af-
ter the conclusion of this first generation, selection be-
gins: some members are kept, some discarded, better
ones are reinforced and crossed over with others, etc.
The goal of GA is to find better configurations for the
given environment. The longer you run the GA, the bet-
ter configurations it would find. However, the speed at
which it finds better configurations varies a lot. We know
from our experiments that GAs can find near-optimal
configurations faster than purely random search or ex-
haustive searches of the space, but there is no clear indi-
cation from the experiments as to how long it can take.
In very large spaces, it is not guaranteed that a GA—or
any search algorithm—can find a global optimum. But
as long as we keep finding better and better configura-
tions than default ones, then the systems’ performance
continues to improve.

3 Case Study: Optimize Storage Systems
Hardware setup. We first describe experiments on a
7-year-old server to show that even aging hardware can
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Figure 1: Configuration connectivity. Using a single mutation,
an Ext4 configuration can easily reach an Ext3 one; but file
systems such as Reiserfs and Btrfs have fewer reachable paths.

be useful after applying GA: a Dell PowerEdge SC1425
server with two Intel Xeon single-core 2.8GHz CPUs,
2GB RAM, and two 73GB Seagate ST373207LW SCSI
drives.

Software. We used Filebench [3], to emulate I/O ac-
tivity. Filebench is versatile and comes with multiple
pre-configured personalities: we used its mailserver,
fileserver, database, and webserver workloads. For our
experiments, we formatted and mounted a storage device
with specific file system, format, and mount options and
then ran Filebench on it.

File systems used. We use a fitness value that is di-
rectly related to I/O performance, so we naturally con-
sidered the file system as the key parameter [12]. Based
various factors such as the on-disk structures (BTree,
LFS, FFS), user base, active development and support
in all major Linux distributions, we chose the following
seven file systems and their key parameters: Ext2, Ext3,
Ext4, Xfs, Btrfs, Reiserfs and Nilfs2.

Applying GA. We used two chromosome versions in
our experiments; see Table 1. The Storage v1 chro-
mosome defines these genes (or parameters): file sys-
tem, block size, inode size, blocks per group, and op-
tions (mount, journal, etc.). Most file systems have the
aforementioned common set of parameters, so we chose
this design to generically represent any file system’s
configuration. Some genes take on powers-of-2 val-
ues within permitted ranges: block size, inode size, and
blocks per group. The mount option is a Boolean to turn
on/off flags such as atime. The journal gene supports
three journaling modes. Storage v2 adds the I/O sched-
uler (deadline, noop, cfq and disk-type (SAS,
SATA, SSD) genes.

Every file system can have certain parameters that are
unique to it. Currently, we do not create a new gene field
for every such unique parameter; instead we defined a
generic special options gene which holds such unique
parameters for all file systems. For example, to define
a chromosome for ReiserFS’s unique notail option,
we use the special options gene for it; this lets us define

Btrfs’s compress, nodatacow, nodatasow op-
tions. Certain combinations of genes could produce a
“bad chromosome” or an invalid configuration. For ex-
ample, journaling options make no sense for Ext2 be-
cause it does not have a journal. To handle this, we
added a value none to the existing range of some genes.
Any gene with none value is considered void. Since we
cannot benchmark invalid configuration combinations,
we give them a zero fitness value, which ensures they
are purged in an upcoming generation.

Table 1 shows that total number of valid configura-
tions in Storage v1 is 2,074: 184 Ext2, 736 Ext3, 736
Ext4, 216 Xfs, 162 Nilfs2, 24 Btrfs, and 16 Reiserfs con-
figurations. So if we run a GA over a completely random
population, with a high probability, valid Ext3 and Ext4
configurations will dominate the file systems explored;
few valid configurations like Btrfs and Reiserfs would
be explored. Most of the Btrfs and Reiserfs configura-
tions formed from a single gene (parameter) mutation
from Ext3 or Ext4 often produce an invalid configura-
tion. Only few transformations from other valid config-
urations can lead into valid Btrfs and Reiserfs configu-
rations. We call this a configuration connectivity prob-
lem. Figure 1 illustrates all 2,074 valid configurations
in our Storage v1 as an undirected graph. Each node
represents a single file system configuration. Each edge
represents whether two configurations can be reachable
from each other with just a single mutation. We can see
that Ext3 and Ext4 dominate the space and are densely
connected. Because uniform random selection can thus
be lopsided, we initialized the population such that the
default configuration of every file system is present. This
way hard-to-reach configurations get a chance to partic-
ipate and be reinforced over generations if they perform
better. For all experiments, we used a population size of
80, the Roulette wheel method to select chromosomes
for crossover, and a single point crossover with a prob-
ability 0.9. We mutated chromosomes uniformly at ran-
dom with a rate of 0.02. These values are often used in
the literature.

Results. We experimented with several GA parame-
ters, two chromosomes (see Table 1), four workloads,
and three classes of machines. For brevity, we report
only a subset of representative results here. Table 2 sum-
marizes the results of Filebench’s mailserver workload
using GA and the Storage v1 chromosome of Table 1.
We ran GA five times, each for 200 generations. We
also exhaustively ran all 2,074 Storage v1 configurations
on all four workloads, to identify the actual global best
configuration. We ran each of the 4 workloads multiple
times to ensure statistical stability; this exhaustive set of
tests took nearly 50 clock days at the rate of approxi-
mately 4 days per single run of each workload. With
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Configuration #Useful #Unique Example
Type Params. Useful Configs. Useful Params.

Storage v1 7 2, 074 file system (e.g., Ext4), block size (e.g., 4KB), inode size (e.g., 256B), block groups
size (e.g., 128MB), mount options (e.g., noatime, journal=ordered)

Storage v2 9 18, 666 Storage v1 + I/O scheduler type (e.g., deadline, CFQ) + Disk type (e.g., SSD,
SATA)

Table 1: No. of useful parameters and configurations that can be explored for performance optimization

#Run Throughput File Block Blocks Inode Mount Journal
ops/s System Size per group Size Options Options

Run 1 1,639 Ext4 2,048 4 128 noatime journal=writeback
Run 2 3,669 Nilfs2 2,048 256 - atime order=relaxed
Run 3 1,903 Ext2 4,096 8 512 noatime -
Run 4 3,677 Nilfs2 2,048 256 - atime order=relaxed
Run 5 3,677 Nilfs2 2,048 256 - noatime order=relaxed

Default 1,420 Ext4 4,096 32 256 atime journal=ordered
Best 3,669 Nilfs2 2,048 256 - atime order=relaxed

Table 2: Results of GA experiments for Mailserver workload on Storage v1 chromosome

just the addition of two parameters in Storage v2, it is
evident that run time for a single workload goes up by
12×; thus exhaustive explorations of the space become
quickly impractical.

Table 2 shows that in 3 of 5 runs, Nilfs2 produced a
better configuration than the default Ext4 one: 2.6× bet-
ter throughput. In fact, GA actually found the global best
throughput configuration twice (modulo small standard-
deviation fluctuations). In run 1, GA picked Ext4 but
with different options that was still 15% better than
Ext4’s default options. Surprisingly, in run 3, GA picked
the old Ext2 file system and a throughput 16% better
than in run 1. These results demonstrate GA’s ability
to find significantly better—and sometimes surprising—
configurations than default ones. For the three runs that
selected Nilfs2, the mount option noatime was se-
lected only once, but that did not impact overall through-
put. We can conclude that noatime is unimportant
when running the mailserver workload on Nilfs2.

Figure 2 details the results summarized in Table 2.
The top figure shows the average throughput of the pop-
ulation at the end of each generation, over 200 genera-
tions, for all five runs. The fluctuations seen are a nat-
ural outcome of GA’s random exploration of the search
space. The middle figure is similar but instead records
only the best maximum throughput found up to the given
generation. The stair-step pattern represents plateaus in
our search terrain with higher fitness as newer configura-
tions are found. We can see that once GA found a better
configuration, it is reinforced and carried over to future
generations. The bottom figure is the same as the mid-
dle one, but instead shows the maximum throughput by
clock time instead of generation number. It shows that
the runs that happen to find better configurations early
on (Nilfs2) where able to finish 200 generations 2–3×
faster than the runs that got “stuck” on poorer perform-
ing Ext2 and Ext4 configurations. We can also infer the
run time efficiency of GA from this graph. GA over Stor-

age v1 runs mostly around 10–15 hours whereas an ex-
haustive search takes 4 days. Figure 2 demonstrates the
need to tune GA’s parameters to search more promising
areas of space and [re]seed the population according to
the search space shape (see Figure 1). In most runs, 50
generations would have been enough; but for run 3, we
needed 150 generations, suggesting the need for a good
stopping criteria (convergence).

When we ran a different workload—fileserver—it
converged on a different configuration than Nilfs2: an
Ext4 configuration. This shows that the workload is a
key part of the environment and significantly impacts
the search space and optimal configurations. The op-
timal configuration is also sensitive to the changes in
hardware. When we ran the mailserver workload exper-
iments on a newer and faster machine with the Storage
v2 chromosome, Nilfs2 was no longer the best configu-
ration for the mailserver workload: Ext2 was. Ext2 beat
the default Ext4 configuration (on SSD), by about 7.4%.
Another surprise was that the best configuration used the
noop I/O scheduler rather than the default deadline
one. This proves that default configurations are often
sub-optimal and even common wisdom (i.e., best ac-
cepted practices) can be wrong. Expanding the chromo-
some to include I/O schedulers and disk types improved
overall throughput by 13.4%. This shows the need to
explore as many parameters as possible in large spaces.

4 Conclusion and Future Work
Storage stacks are getting more complex with added
controls to optimize. Optimizing such systems is becom-
ing exponentially more challenging. Users still rely on
unsuitable or manual methods using limited, narrow do-
main expertise that lacks a global system view. Worse,
optimizing one system often does not carry over when
the environment (hardware, software, or workloads) in-
evitably changes. We believe that Meta-heuristic search
techniques (GA, SA, etc.) are key to optimizing storage
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Figure 2: Throughput GA results for Mailserver workload: av-
erage by generation (top), max by generation (middle), and
max by time (bottom).

systems. Our preliminary experiments have shown their
potential to find near-optimal configurations regardless
of changing environments—often finding surprisingly
unexpected configurations that defy existing practices.

GA has a few tunable parameters that speed up explor-
ing the search space. We plan to study the effects of dif-
ferent selection and crossover methods, mutation rates,
and adaptive techniques. We plan to combine some MH
techniques together (e.g., GA and SA), especially in en-
abling the automatic removal of less important parame-
ters, thus reducing the search space. Currently our fit-
ness function is defined as a numeric throughput. We
are exploring more complex cost functions involving
energy efficiency, reliability, and even economic mod-
els. In more practical scenarios, workloads change with
time. Such scenarios demand continual GA evaluation
depending on the speed of change. We plan to develop
automated stopping/resuming criteria for GA based on
the observed differences in fitness values for known en-
vironments. Moreover, it may not be feasible to change
some system parameters frequently. Mount parameters
like noatime can be set during run time, but file sys-

tems cannot be formatted/changed without downtime. In
the future, we will explore and add the costs of such
changes to the fitness function.
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