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Abstract

Storage consumption continues to grow rapidly, espe-
cially with the popularity of multimedia files. Worse,
current disk technologies are reaching physical me-
dia limitations. Storage hardware costs represent a
small fraction of overall management costs, which in-
clude backups, quota maintenance, and constant inter-
ruptions due to upgrades to incrementally larger stor-
age. HSM systems can extend storage lifetimes by mi-
grating infrequently-used files to less expensive storage.
Although HSMs can reduce overall management costs,
they also add costs due to additional hardware.

Our key approach to reducing total storage manage-
ment costs is to reduce actual storage consumption. We
achieve this in two ways. First, whereas files often have
persistent lifetimes, we classify files into categories of
importance, and allow the system to reclaim some space
based on a file’s importance (e.g., transparently com-
press old files). Second, our system provides a rich set of
policies. We allow users to tailor their disk usage poli-
cies, offloading some of the management burdens from
the system and its administrators. We have implemented
the system and evaluated it. Performance overheads un-
der normal use are negligible. We report space savings
on modern systems ranging from 20% to 75%, which
result in extending storage lifetimes by up to 72%.

1 Introduction

Despite seemingly endless increases in the amount of
storage and the ever decreasing costs of hardware, man-
aging storage is still expensive. Additionally, users con-
tinue to fill increasingly larger disks, worsened by the
proliferation of large multimedia files and high-speed
broadband networks. Baker reported in 1991 that the
size of large files had increased by ten times since the
1985 BSD study [1, 19]; Roselli [21] reported in 2000
that large files were getting ten times larger than Baker’s
reported. Our recent studies (Section 3) show that just
three years later, large files are ten times larger than

Roselli reported. Moreover, storage requirements are
continuing to grow at a rate of 50% a year [6]. Finally,
existing hard disk technology is reaching physical lim-
itations, making it harder and costlier to meet growing
user demands [12].

Storage management costs have remained a signifi-
cant component of total storage costs. Gelb reported in
1989 that even in the *70s, storage management costs at
IBM were several times more than hardware costs, and
projected that they would reach ten times the cost of the
hardware [8]. Today, management costs are indeed five
to ten times the cost of underlying hardware and are ac-
tually increasing as a proportion of cost because each
administrator can only manage a limited amount of stor-
age [3,7,14-16]. Up to 47% of storage costs are asso-
ciated with administrators manually manipulating files
[27]. We believe that reducing the rate of consumption
of storage, and not waiting for the next generation of
larger storage products, is the best solution to this prob-
lem.

Thankfully, significant savings are possible: old data
can be compressed and regenerable data can be removed.
Previous studies show that over 20% of all files—
representing over half of the storage—are regenerable
[23]. Our own study, however, shows that 15.3% of all
files are regenerable, but they account for only 17.6%
of storage space; this is because in recent years, non-
regenerable multimedia files have begun taking large
amounts of space, suggesting the need to handle mul-
timedia files differently. Other studies indicate that 82—
85% of storage is consumed by files that have not been
accessed in more than a month [2, 24]. Our studies con-
firm this trend, and show that of the 9 million files in our
study, 89.1% of them have not been accessed in the past
month, taking up 90.4% of the total storage. As overall
storage sizes increase, more infrequently-used files are
left on expensive disks, instead of being consolidated or
migrated—thereby increasing the total cost of storage.

We conclude from these studies that storage manage-



ment has been a problem in the past, continues to be a
problem today, and is only getting worse—all despite
growing disk sizes. Morris described the idea of Auto-
nomic Computing, which includes “the system’s ability
to adjust to its configuration and resource allocation to
achieve predetermined goals” [16]. Golding et. al. as-
sert, “storage systems must be self-managing” [9]. Hier-
archical Storage Management (HSM) systems have mul-
tiple tiers of storage, from high-end disks to slow and
inexpensive tape drives; infrequently-accessed data is
moved to slower tiers of the HSM system. HSM'’s, how-
ever, add management costs and are not flexible enough
for users. Our Elastic Quota System (Equota) is de-
signed to help the management problem via efficient use
of storage while allowing users maximal freedom, all
with minimal administrator intervention.

Elastic quotas enter users into a contract with the sys-
tem: users can exceed their quota while space is avail-
able, under the condition that the system will be able to
automatically reclaim the storage when the need arises.
Users or applications may designate some files as elas-
tic. When space runs short, the Elastic Quota System
may reclaim space from those files marked as elastic;
non-elastic files maintain existing semantics and are ac-
counted for in users’ traditional quotas. Elastic quotas
creates a hierarchy of data’s importance: the most im-
portant data can never be reclaimed; some data may be
compressed; other data can be compressed in a lossy
manner; and regenerable data may be deleted. Users and
system administrators can configure flexible policies to
designate which files belong to which part of the hierar-
chy. Elastic quotas introduce little overhead for normal
operation, and demonstrate that through this new disk
usage model, significant space savings are possible.

The rest of this paper is organized as follows. Sec-
tion 2 discusses background work. Section 3 describes a
study we conducted which motivated our design in Sec-
tion 4. Section 5 discusses the various policies we sup-
port. Section 6 presents measurements and performance
results of various policies. We conclude in Section 7 and
discuss future directions.

2 Background

Elastic quotas are complementary to Hierarchical Stor-
age Management (HSM) systems. HSMs provide ways
to reclaim disk space by moving less-frequently ac-
cessed files to a slower disk or tape. HSMs often provide
a way to access files stored on the slower media, rang-
ing from file search software to replacing the original,
migrated file, with a link to its new location. There are
many applications for HSM systems, such as online ref-
erence data (e.g., CAD/CAM drawings, medical imag-
ing, etc.), archival storage (e.g., email archiving), and
backup and remote disaster recovery (e.g., to improve

restore times). Such data is becoming a growing com-
ponent of total storage; by 2004 over 50% of storage
reportedly will be reference information [17].

Several HSM systems are in use today including Uni-
Tree [5], SGI DMF (Data Migration Facility) [26], the
Smart Storage Infinet system [29], IBM Storage Man-
agement [11], Veritas NetBackup Storage Migrator [30],
and parts of IBM OS/400 [20]. Most HSM systems use
a combination of file size and last access times to de-
termine the file’s eligibility for migration. HP AutoRaid
migrates data blocks using policies based on access fre-
quency [31]. Wilkes et. al. implemented this at the block
level, and suggested that per-file policies in the file sys-
tem might allow for more powerful policies; however,
they claim that it is difficult to provide an HSM at the
file system level because there are too many different
file system implementations deployed. We believe that
using stackable file systems can mitigate this concern,
as they are relatively portable [10, 28, 34]. In addition,
HSMs typically do not take disk space usage per user
over time into consideration, and users are not given
enough flexibility in choosing storage control policies.
We believe that integrating user- and application-specific
knowledge into an HSM system would reduce overall
storage management costs.

In the past, HSMs consisted of fast primary storage
such as magnetic disks, and then magnetic tape or op-
tical media as a slower yet inexpensive layer. NetApp
NearStore and similar products bring a new layer to this
hierarchy: less expensive large disk arrays [18]. To con-
serve storage space, the AS/400 allows some disks to be
compressed automatically [20]. Although these meth-
ods decrease the cost of the storage medium, they add
additional devices that must be managed by administra-
tors. To reduce overall storage management costs, we
claim that the runaway space consumption rates must be
reduced.

3 Motivation

It has long been suggested that storage needs are
increasing—as quickly as larger storage technologies are
produced. Moreover, each upgrade is costly and carries
with it high fixed costs [7]. To determine how best to re-
duce management costs, we ran a comprehensive study
to quantify this growth, with an eye toward reducing the
rate of growth through an intelligent set of policies.

We have identified three methods of reducing growth,
each with an increasing risk level. First, data can be
compressed through lossless means such as a transparent
compression file system [20,32]. This method carries
very little risk since no data is destroyed. Second, mul-
timedia files such as JPEG or MP3 can be re-encoded
with lower quality. This method carries some risk be-
cause not all of the original data is preserved, but the



data is still available and useful. There are no known
published studies that give specific guidelines for mul-
timedia recompression, but through practical experience
within the industry and our own personal observations
we have determined acceptable ratios. Third, regener-
able files (e.g., reproducible .o files) can be removed.
This method carries more risk since the file must be re-
generated before it can be used again.

To determine what savings are possible given the cur-
rent usage of disk space, we conducted a study of five
sites, for which we had complete access. These sites
include a total of 3908 users, over 9 million files, and
746GB of data dating back 15 years:

e A: A small software development company with 20
programmers and 80 management, sales, market-
ing, and administrative users with data from 1992-
2003.

e B: A large academic department with 3581 users,
the majority of which are students conducting re-
search and working on homework assignments.
Our data includes shared file servers, whose data
was collected over 15 years.

e C: A research group with 177 users and data from
2000-2003.

e D: An ISP and network integrator with 10 develop-
ers and system administrators with data from 1998—
2003.

e E: A group of 40 cooperative users with personal
Web sites and data from 2000-2003.

Each of these sites has experienced real costs asso-
ciated with storage: A underwent several major storage
upgrades in that period; B continuously upgrades several
file servers every six months; the statistics for C were ob-
tained from a file server that was recently upgraded; D
has outgrown its disk capacity, but lacks the resources
to upgrade; and E has recently installed quotas to rein in
disk usage.
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Figure 1: Possible Storage Savings. Actual amounts appear
to the right of the bars, with the total size on top.

To simulate a space-reclamation policy on these five
sites, we considered the three space reclamation meth-
ods discussed above. The savings from compression,
lossy compression, and correlated removal can be seen
in Figure 1. The top white bar is the amount saved by
risk-free compression; the next hatched bar is the sav-
ings from lossy compression; and the next bar down
represents savings from the removal of regenerable files.
The amount of storage remaining after cleaning is the
dark bar at the bottom.

First we considered a transparent compression pol-
icy. We considered all compressible files that have not
been accessed or modified in 90 days as candidates for
compression. In this situation, we save between 4.6%
(20.8GB) from group B and 54.1% (41GB) from group
C. We yield large savings on group C: it has 400,988 .c
files that compress to 27% of their original size thereby
saving 4GB storage. Group B contains a large number
of active users, so the percentage of files that were used
in the past 90 days is less than that in the other sites.

Next, we tested the ability to reclaim space using lossy
compression. We did not consider media files in the
transparent compression method because greater sav-
ings can be achieved through lossy compression. The
lossy compression savings reflect the sum of our sav-
ings from compressing still images, videos, and sound
files. The results varied from no savings on group D
to a savings of 35% (4.2GB) for group E. The largest
overall space savings came from group B, where 19%
(87.5GB) was saved. Group D shows no savings from
lossy compression because it is a commercial product
development group where personal files are not allowed,
whereas groups B and E are more liberal sites, and there-
fore contain a large number of personal .mp3 and .avi
files. As media files grow in popularity and size, so will
the savings from a lossy compression policy.

Finally, we considered the removal of all regenerable
or expendable files, such as . o files (with corresponding
.c’s) and ~ files, respectively. We account for the fact
that these files may have already been compressed, and
our savings take into account their sizes after compres-
sion. We observed savings between 0.7% (70MB) for
group D and 40.5% (74.1GB) for group A. The files on
group D were predominantly executables and . tar files
which cannot be regenerated, whereas group A had large
temporary backup tar files that were no longer needed
(ironically, they were created just prior to a file server
migration).

Overall, using all three methods, we save between
16% (1.6GB) and 74.2% (135.6GB) of total disk space,
averaging 48% savings across all five groups.

To verify if applying the aforementioned three space
reclamation methods would reduce the rate of disk space
consumption, we correlated the average savings we ob-



tained in the above environments with the SEER [13]
and Roselli [21] traces. We also evaluated the useful-
ness of the Sprite [22] and BSD [19] traces. However,
we chose to use the SEER traces as they were more re-
cent and provided us with both the path and growth in-
formation needed for our study. We require filename and
path information, since our space reclamation methods
depend on file types determined by extension.

The SEER traces range from 1 to 6 months and record
the system call activity of nine different users working
on both connected and disconnected Linux-based laptop
computers with 810MB IBM DVAA-2810 hard disks.
(We obtained some of this information directly from Ge-
off Kuenning, the chief researcher on the SEER project,
since it was not available in existing publications.) In
spite of the filename and growth information available in
the SEER traces, they lack file size information needed
to analyze the usefulness of our space reclamation poli-
cies. To compute the disk space consumed during the
trace period, we found the number of files that were cre-
ated during the trace period and multiplied this with the
average file size in the Roselli traces. We chose to use
the Roselli traces here because they were taken in 1996,
at around the same time the SEER traces were taken,
and would therefore give us a better estimate of the av-
erage file size on a system at that time. Unfortunately,
the Roselli traces were anonymized and contained no file
name or path information, so we could not run sample
policies on them, leading us to correlate the two traces
together to come up with a realistic usage scenario. As
the cleaning policies are based on the file extensions, we
computed the space consumed by each extension in the
SEER traces by multiplying the number of files of each
extension by the average size of files of the correspond-
ing extensions that we obtained in our study of the five
groups.
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Figure 2: SEER File System Growth and Potential Savings
from Equota Space Reclamation Policies

The results of our analysis can be seen in Figure 2.
All of these lines begin at 1.8GB, since each of the 9 lap-
tops in the SEER traces had Slackware Linux installed,
which consumed about 200MB each in system files and
swap space at that time. At the rate of growth exhibited

in the traces, the hard drives in the machines would need
to be upgraded after 11.14 months. Adding a compres-
sion policy extends the disks’ lifetime to 18.5 months.
Adding a lossy compression policy extends the disks’
lifetime to 18.7 months. Finally, the savings from re-
moving regenerable files extended the disks’ lifetime to
19.2 months. These techniques stretch the disks’ life-
times beyond the 18 month doubling period of Moore’s
law. Although the savings from lossy and correlated
files are small here, we believe this is a result of the
data available in the traces. Although the SEER traces
did provide filenames, only certain filenames remained
unanonymized, leaving us to estimate growth based on
averages we computed across all 9 million files in the
five group study. Also, lossy-compression-based poli-
cies are centered around media files, which have in-
creased in popularity in recent years. Nevertheless, our
conservative study shows that we can still reduce growth
rates by 52%. Furthermore, as the number and foot-
print of large-sized media files increase and large files
get even larger [1,21], so will the savings from lossy
compression. Based on these results, we have concluded
that policies such as these three are very promising stor-
age management cost-reduction techniques.

4 Design

Our two primary design goals were to allow for (1) ver-
satile and (2) efficient elastic quota policy management
techniques. An additional goal was to avoid changes to
the existing OS to support elastic quotas. To achieve ver-
satility we designed a flexible policy management con-
figuration language for use by administrators and users;
a number of user-level and kernel features exist to sup-
port this flexibility. To achieve efficiency we designed
the system to run as a kernel file system with DB3 [25]
databases accessible to the user-level tools. Finally, we
used a stackable file system to ensure we do not have to
modify existing file systems such as Ext3 [33].

Given the above goals, the design of an elastic quota
file system has to answer one key question: how to iden-
tify a file as elastic vs. persistent. A related question
is how to efficiently locate all elastic files on a given file
system. We mark a file as elastic using a single inode bit;
such spare bits are available in most modern disk-based
file systems such as FFS, UFS, and Ext2/3. Changing
elasticity here involves using a standard ioctl to turn
the bit on or off. Our prototype uses the Ext3 nodump
bit, which indicates that a file should not be backed up,
so the semantics already make sense for elastic files.
Most stackable file systems attempt to achieve complete
independence from the underlying file system. Our im-
plementation, however, takes advantage of specific Ext2
or Ext3 features without modifying them (only 9 lines of
Ext2/Ext3 specific code are needed). Locating all elastic



files requires recursive scanning of all files and check-
ing if the inode bit is on or off. To improve performance
and versatility in this design we also record elastic file
information in DB3 databases: user 1Ds, filenames, and
inode numbers. These DB3 databases improve perfor-
mance, but if lost, they can be regenerated from infor-
mation contained within the file system.

4.1 Architecture

Figure 3 shows the overall architecture of our system.
We describe each component in the figure and then the
interactions between each component. There are four
components in our system:
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Figure 3: Elastic Quota Architecture

1. EQFS: The elastic quota file system is a stackable
file system that is mounted on top of another disk-
based file system such as Ext3. EQFS includes
a component (Edquot) that indirectly manages the
kernel’s native quota accounting. EQFS may also
be configured to send messages to a user space
component, Rubberd.

2. DB3 databases: These databases record informa-
tion about elastic files. We have two types of
databases. First, for each user we maintain a
database that maps inode numbers of elastic files
to their names, which we denote in this paper as
I—N. Having separate databases for each user al-
lows us to locate all of the elastic files of a user
easily, as well as enumerate all elastic files by go-
ing over each per-user database. The second type
of database we maintain (denoted U—A) records
an abuse factor for each user denoting how “good”
or “bad” has a given user been with respect to his-

torical utilization of disk space. We describe abuse
factors in detail in Section 5.3.

3. Rubberd: This user-level daemon contains two
threads. The database management thread is re-
sponsible for updating the various DB3 databases.
The policy thread executes cleaning policies at
given times, which often involves querying the
DB3 databases.

4. Elastic Quota Utilities: These utilities include en-
hanced versions of the quota-uti ls package,
used to query, set, and control user and group quo-
tas. We enhanced these utilities to support elastic
quotas. We also created new utilities that can build
or query the DB3 databases; this is useful to build
the DB3 databases from an existing file system or
to quickly list all elastic files owned by a user.

4.2 System Operation

Before we describe our system’s operation, we describe
how quotas are accounted on a system without elastic
quotas. In traditional operating systems, quota account-
ing is often integrated with the native disk-based file sys-
tem. Since Linux supports a number of file systems with
quotas, quota accounting is an independent VFS com-
ponent called dquot. Usually, system calls invoke VFS
operations which in turn call file-system—specific oper-
ations. However, unlike other VFS code, Dquot code
does not call the file system. Instead, the native file sys-
tem calls the Dquot operations directly. This Dquot op-
erations vector is initialized when quotas are turned on
for that file system by the system administrator or at boot
time. The reason for this reverse calling sequence is that
only the native disk-based file system knows when a user
operation has resulted in a change in the consumption of
inodes or disk blocks.

Our stackable file system EQFS intercepts file system
operations, performs related elastic quota operations,
and then passes the operation to the lower file system
(Ext2, Ext3, etc.). EQFS also intercepts quota manage-
ment operations and inserts its own set of operationsin a
component called edquot. Figure 3 shows that the call-
ing convention for regular file system operations is from
a user process issuing a system call, to the stackable file
system, and then down to the lower file system. How-
ever, the calling convention for elastic quota operations
is reversed: from the lower file system, through our elas-
tic quota management (Edquot), and to the VFS’s own
quota management (Dquot). We devised this novel in-
terception form—or reverse stacking—to avoid chang-
ing either the VFS (i.e., Dquot) or native file systems.

Each user on our system has two UIDs: one that ac-
counts for persistent quotas and another that accounts
for elastic quotas. The latter, called the shadow UID, is
simply the ones-complement of the former. The shadow



UID does not modify existing ownership or permissions
semantics; it is only used for quota accounting. Users
execute system calls which the VFS translates into file
system operations. We pass those operations to Ext3.
When Ext3 calls EQFS’s Edquot operations, Edquot de-
termines if the operation was for an elastic or a persis-
tent file, by inspecting the file’s elastic inode bit. If the
accounting operation was for an elastic file, Edquot tells
Dquot to account for the changed resource (inode or disk
block) in the shadow UID. In this manner it is easy to ac-
count for elastic and persistent quotas separately; both
kernel and user-level utilities can easily find out how
much persistent or elastic space a user is using, which
eases Rubberd’s policy management tasks.

We have two methods for keeping track of elastic files.
The first, called full mode, is to track each relevant file
operation. The second, called null mode, is to periodi-
cally (e.g., nightly) generate a list of elastic files from the
file system. The advantage of full mode is that the list of
elastic files will always be current; the advantage of the
null mode is that overhead is minimized during normal
system operation. The mode can be selected using the
“netlink” option in rubberd.conf (see Table 1). We
evaluated both modes in Section 6.

If running in full mode, whenever EQFS performs cer-
tain operations that affect an elastic file, it informs Rub-
berd of that event. Rubberd records the status of that
elastic file in the DB3 databases. EQFS informs Rub-
berd about creation, deletion, renames, hard links, or
ownership changes of elastic files. Additionally, when-
ever a persistent file is made elastic or an elastic file is
made persistent, EQFS treats this as a creation or dele-
tion event, respectively. EQFS communicates this in-
formation with Rubberd’s database management thread
over a Linux kernel-to-user socket called netlink.

When operating in full mode, Rubberd’s database
management thread listens for netlink messages from
EQFS. When it receives a message, Rubberd decodes
it and applies the proper operation on the per-user I —N
database. For example, users can make a file elastic us-
ing the chattr (change file attributes) utility on Linux.
When they turn on the elastic bit on a file, EQFS sends
a “create elastic file” netlink message to Rubberd along
with the UID, inode number, and the name of the file.
Rubberd then performs a DB3 “put” method to insert a
new entry in that user’s I—N database, using the inode
number as key and the file’s name as the entry’s value.

Rubberd’s policy thread executes a given policy as de-
fined by the system administrators. Suppose Rubberd’s
policy thread is executing a removal policy to reclaim
disk space by deleting regenerable elastic files. Rub-
berd invokes unl ink operations through EQFS, which
in turn are passed to Ext3 and Dquot. When using
full mode, EQFS sends a netlink message to Rubberd’s

database management thread—in this case a “delete
elastic file” netlink message. Rubberd is multi-threaded
because it has to concurrently invoke EQFS system calls
and receive and process netlink messages from EQFS.

When using null mode, the DB3 databases will not be
up-to-date with respect to the file system. Nevertheless,
this mode is useful for a time-based policy such as clean-
ing oldest files first, since older files are likely to remain
in the DB3 database. Since Rubberd obtains information
about all files at cleaning time, even if the file was up-
dated after the nightly generation of the database, Rub-
berd will still use up-to-date file attributes. If Rubberd is
not able to reclaim enough space using the previously-
generated databases, it will initiate a more expensive
recursive scan of the file system to generate up-to-date
databases. System administrators must weigh the added
benefit of up-to-date accounting with the extra perfor-
mance overhead introduced by EQFS’s full mode.

Rubberd is configured to wakeup periodically and
record historical abuse factors for each user, denoting
the user’s average elastic space utilization over a period
of time. Rubberd gets the list of all users, their elastic
and persistent disk usage, and their elastic and persis-
tent quotas (if any). With these numbers, Rubberd com-
putes an updated abuse factor, and stores this value in
the U—A database. We describe abuse factors in more
detail in Section 5.3.

4.3 Elasticity Modes

EQFS supports five methods of determining when a file
becomes elastic. This allows us to leverage user and
application-specific knowledge when determining how
to reclaim space.

First, users can toggle the file’s elasticity by using the
standard Linux chattr tool. This allows users to con-
trol elasticity on a per file basis. Once a file is made
elastic or persistent, moving it to other directories on the
system does not change its elasticity.

Second, users can use chattr to toggle the elastic
bit on a directory inode. EQFS inherits the elastic bit to
any newly-created file or sub-directory, similarly to how
a new file’s group is inherited in a setgid directory. This
elasticity mode is useful for whole elastic hierarchies,
such as /tmp or a user’s Web browser cache directory.

Third, users can tell EQFS (via an 1octl) whether
files that are newly created should be elastic or not. This
mode works similarly to how the newgrp command
sets the default group that all newly-created files or di-
rectories should use. One use for this mode is when
users unpack an important source distribution; before
beginning to build the package, users can set this elas-
ticity mode for all future files. That way, all newly cre-
ated files during the build, regardless of their location,
will be elastic: objects, libraries, executables, header-



dependency files, etc.

Fourth, users can tell EQFS (again, via an ioctl)
which newly-created files should be elastic by their
name. Specifically, users can specify a small num-
ber of file extension strings that are matched by
eqfs_create from a newly-created file name. This
mode is particularly useful because users often think of
the importance of files by their type—or extension (e.g.,
-C are more important than .o files because the latter
can be easily regenerated from the former).

Finally, application developers may know best which
files are are best marked elastic. Since many temporary
files are not created by users, but rather by programs,
we added a new flag to the open and creat EQFS file
system methods: O_ELASTIC. This flag tells EQFS to
create the new file as elastic. For example, Emacs can
automatically create its ~ backup files elastically.

5 Elastic Quota Policies

The core of the elastic quota system is its handling of
space reclamation policies. EQFS is the file system
that provides elasticity support and works in conjunction
with Rubberd, the user-space daemon that implements
cleaning policies, as seen in Figure 3.

We start (Section 5.1) with a general discussion of
the design issues involved in policies; as we see, there
are often conflicting concerns that must be carefully bal-
anced to provide a convenient, fair, and versatile system.
In Section 5.2 we discuss the design of Rubberd’s policy
engine from the perspectives of users and administrators.
In Section 5.3 we discuss how Rubberd determines fairly
how much disk space to reclaim and from which users;
that culminates in Section 5.4 where we detail the actual
methods and algorithms we use to reclaim disk space;
and finally in Section 5.5 we describe how elastic quotas
may be used in various situations.

5.1 Policy Design Considerations

File system management involves two parties: the run-
ning system and the people involved (administrators and
users).

To the system, file system reclamation must be effi-
cient so as not to disturb normal operations. For ex-
ample, when Rubberd wakes up periodically, it must be
able to quickly determine if the file system is over the
administrator-defined high watermark. If so, Rubberd
must be able to locate all elastic files quickly because
those files are candidates for removal. Moreover, de-
pending on the policy, Rubberd will also need to find out
certain attributes of elastic files: owner, size, last modi-
fication time, etc.

To the people involved, file system reclamation poli-
cies must consider three factors: convenience, fairness,
and gaming. These three factors are important especially

in light of efficiency, because some policies could be ex-
ecuted more efficiently than others. We describe these
three factors next. However, the overall design goals of
this work were to provide as much flexibility to both ad-
ministrators and users to decide on the suitable set of
policies that meet their site’s needs.

Convenience The system should be easy to use and
simple to understand. Users should be able to find out
how much disk space they are consuming in persistent
and elastic files and which of their elastic files will be
reclaimed first. Administrators should be able to config-
ure new policies easily.

The algorithms used to define a worst offender should
be simple and easy to understand. For example consid-
ering the current total elastic usage is simple and easy
to understand. A more complex algorithm could count
the elastic space usage over time as a weighted average.
Although such an algorithm is also more fair, because it
accounts for historical usage, it might be more difficult
to understand by users.

The reclamation method also heavily influences con-
venience. Having a file removed is less convenient than
a transparent compression policy. Equally important, the
user should be aware of what non-transparent actions
have been performed on their files by the system.

Fairness Fairness is hard to quantify precisely. It is
often perceived by the individual users as how they per-
sonally feel that the system and the administrators treat
them. It is important to provide a number of policies that
can be tailored to a site’s own needs. For example, some
users might consider a largest-file-first removal policy
unfair because recently-created files may be reclaimed
after a short period of time. Other users might feel that
an oldest-creation-time policy is unfair because it does
not account for recency or frequency of use.

For these reasons, the policies that are more fair are
based on individual users’ disk space usage. In partic-
ular, users that consume more disk space over longer
periods of time should be considered the worst offend-
ers. Overall, it is more fair if the amount of disk space
being cleaned is proportional to the level of offense of
each user who is using elastic space. Once the worst
offender is determined and the amount of disk space to
clean from that user is calculated, however, the system
must define which specific files should be reclaimed first
from that user. Basic policies allow for time-based or
size-based policies for each user. For the utmost in flex-
ibility, users are allowed to define their own ordered list
of files to be reclaimed first. This not just allows users
to override system-wide policies, but also to define new
policies based on filenames and other attributes (e.qg., re-
move * .0 and *~ files first).



Gaming Gaming is defined as the ability of individual
users to circumvent the system and prevent their files
from being reclaimed first. Good policies should be re-
sistant to gaming. For example, a global LRU policy that
removes older files could be circumvented by files” own-
ers simply by reading or touching those files. Some
policies are more difficult to game, for example a pol-
icy that removes the largest files first. Users could split
their large files into smaller chunks, but then have to as-
semble the parts back before the large file could be used
again. Policies that are difficult to game include a per-
user worst-offender policy. Regardless of the file’s times
or sizes, a user still owns the same total amount of data.
Such policies work well on multi-user systems where it
is expected that users will try to game the system.

There are certain situations where gaming may not be
an important factor in choosing policies. Certain global
policies (e.g., by time or size) may still be useful in sit-
uations such as with a small group of cooperative users
who do no have an incentive to circumvent the system;
such gaming could hurt their colleagues’ ability to work.
Another useful scenario where gaming is not an issue is
a single-user workstation: to such a user, elastic quotas
can be a useful method of ensuring that temporary files
get automatically cleaned periodically.

5.2 Rubberd Configuration Files

Administrators Administrators typically control two
configuration files in Zetc: (1) an elastic quotas
configuration file (policy.conf) and (2) a Rub-
berd configuration file that defines startup options
(rubberd.conf).

The policy configuration file (pol icy . conf) uses a
simple syntax as follows. The configuration file may de-
fine multiple policies, one per line. When Rubberd has
to reclaim space, it first determines how much space it
should reclaim—the goal. Rubberd then executes each
policy in order until the goal is reached or no more poli-
cies can be executed. Each line in this file has the fol-
lowing space-delimited format:

type method sort [filter ...] Q)

The first parameter, type, defines what kind of pol-
icy to use and can have one of three values: global
for a global policy, user for a per-user policy, and
user_profile for a per-user policy that first consid-
ers the user’s own personal policy file. In this way ad-
ministrators can permit users to define policies on their
files. The second parameter, method, defines how space
should be reclaimed. Our prototype defines four meth-
ods currently: gz ip for a policy that transparently com-
presses files (on access the file is automatically decom-
pressed with no user intervention), lossy for a policy
that re-encodes multimedia files using lower bitrates, rm

for a policy that deletes files, and custom which allows
a customized command to be run. In this way, admin-
istrators can define a system policy that first compresses
files and then removes them: such a policy has the bene-
fit that enough space may be reclaimed by compressing
files and users can still get access to their elastic files
through transparent decompression. A custom policy
using mv and tar could be used together as an HSM
system, archiving and migrating files to slower media
at cleaning time. The third parameter, sort, defines the
order of files being reclaimed. We define several keys:
size (in disk blocks) for sorting by largest file first,
mtime for sorting by oldest modification time first, and
similarly for ctime and atime. The remaining entries
on the policy line are optional and define filename filters
to apply the policy to. If not specified, the policy applies
to all files.
Consider the following policy.conT file:

gl obal rm si ze ~ .bak core .tmp
user gzip ntine
user _profile rm atinme .o

-ipg .npg .nmp3 . avi
The first line starts a simple global policy that will delete
obviously unnecessary elastic files such as backup files
used by editors. When Rubberd tries to reclaim space, it
will try to bring the system down to the goal level by this
first policy line. If that is insufficient, Rubberd will pro-
ceed and apply the second policy line, which defines a
per-user policy that will compress all elastic files. Next,
Rubberd will perform a user policy that removes com-
piler object files that have not been read in a while, but
allows users to override the system defaults. Finally, if
still not enough space has been reclaimed, Rubberd will
apply a lossy compression policy on multimedia files,
again allowing users to override the default selection
based on atime.

The Rubberd configuration file (rubberd.conf) is
simple and defines the parameters described in Table 1.

user_profile lossy atine

Parameter
hi_watermark N
lo_watermark NV
statfs_interval S
mount_point M
netlink on ] off
abuse_cur M
abuse_avg I N
abuse_exp I D

M eaning

% disk usage to begin cleaning
% disk usage to stop cleaning
disk usage check interval (sec)
name of EQFS mount to monitor
process netlink messages?

mode to compute current usage
linear historical abuse factors
exponential historical abuse fac-
tors

Table 1: Rubberd configuration file parameters. We describe
abuse factors in Section 5.3.

Users If the system administrator has allowed users to
determine their own reclamation policies, users can then



use whatever policy they desire for determining the order
in which their files are reclaimed first. The user policy
file can only instruct Rubberd to prefer those files for
reclamation first; if not enough space can be reclaimed,
Rubberd will continue to reclaim space as defined in the
system-wide policy file, policy.conf.

Entry M eaning

class/foo.tgz | arelative pathname to a file

“Imisc a non-recursive directory

“Itmpl/ a recursive directory

src/eqfs/*.0 | all object files in a specific directory
src/l*.0 all object files recursively under src
“II*.mp3 all mP3 files anywhere in home dir.

Table 2: Example user policy file entries

A user-defined policy is simply a newline-delimited
list of file and directory names or simple patterns thereof,
designed to be both flexible and easy to use. Each line
can list a relative or absolute name of a file or direc-
tory. A double-slash (//) syntax at the end of a direc-
tory name signifies that the directory should be scanned
recursively. In addition, simple file extension patterns
can be specified. Table 2 shows a few examples and ex-
plains them.

5.3 Abuse Factors

To reclaim some disk space, Rubberd must fairly dis-
tribute the amount of reclaimed space among all users
that consume any elastic space. To decide how much
disk space to reclaim from each user, Rubberd computes
an abuse factor (AF) for all users. Then Rubberd dis-
tributes the amount of space to reclaim from each user
proportionally to their AF. For example, suppose Rub-
berd needs to clean 6MB of disk space from two users;
user A’s AF is 10 and user B’s AF is 20; then Rubberd
will clean 2MB from user A and 4MB from user B.

Deciding how to compute an AF, however, can vary
depending on what is perceived as fair by users and ad-
ministrators for a given site. Therefore, we provide a
variety of methods for administrators to tailor the com-
putation of AFs to the site’s needs. First, we define two
types of AF calculations: one that considers the current
usage and a second that considers historical usage. Cur-
rent usage is better at tracking users’ existing elastic us-
age; historical usage takes into account users’ behavior
patterns over longer periods of time.

As an example, consider two users: user A has never
used elastic space and just in the past day began con-
suming 100MB; user B has used exactly 50MB of elas-
tic space each day for the past five days. Based on the
current usage policy alone, user A’s AF will be dou-
ble that of user B. During cleaning, twice as much disk

space will be reclaimed from user A than from user B.
This policy can be considered fair to the system—and all
users on the system—Dbecause it will clean space based
on how much is currently being used. However, such
a policy may unfairly punish user A who, on average,
has not used as much as user B: user A’s usage over the
five days, averaged per day, is just 20MB. Therefore,
a historical usage policy may be considered more fair
because it takes into account long-term behavior. The
converse could also be true: a past disk space abuser
could have a high average usage, but currently is not us-
ing much disk space; a history-based AF could result
in many of this user’s elastic files being compressed or
deleted. Interestingly, historical abuse factors may pro-
mote more responsible disk usage over time, and reward
those with lower average usage by allowing them to con-
sume more disk space during a shorter period of time.

Table 1 shows the three Rubberd configuration param-
eters used to compute abuse factors. Rubberd always
computes the current usage per user (U..) at configurable
intervals. If the administrator configured the use of his-
torical factors, then Rubberd also computes a running
composite AF and stores it in a DB3 file.

Current Usage The Rubberd configuration file
(rubberd.conf) parameter abuse_cur takes a
single parameter that defines the mode in which total
current usage (U..) is computed currently:

U, In this mode we only consider the total elastic usage
(Ue, in disk blocks) that the user consumes. This
mode considers elastic usage separately from per-
sistent quotas or persistent usage; it is most useful
in environments with small persistent quotas.

U, — A, Users who use elastic files and also have a per-
sistent quota may not have consumed all of their
persistent quota. Such users could argue that U,
alone is not a fair assessment of their usage because
they have persistent quota available (A,) and they
could simply convert some of their elastic files to
persistent ones. Therefore, this method computes a
user’s current usage as the amount of elastic space
consumed minus the available persistent quota the
user has (truncated to zero).

Ue + U, Similarly to the previous mode, this mode con-
siders the current usage as the total amount of disk
space a user consumes—the sum of both elastic and
persistent usage. This mode could be useful in envi-
ronments where certain users could have very dif-
ferent persistent quotas. In such an environment,
users with large persistent quotas could be viewed
as “hogging” disk space as compared to users with
smaller persistent quotas.

Our system supports several more modes to compute
current usage, based on percentages of usage vs. some



total; we omit discussion of those for brevity.

Historical Usage The Rubberd configuration parame-
ter abuse_avg computes a linear average of usage over
a period of time. This option takes two parameters: I de-
fines the interval in seconds between samplings of cur-
rent usage; N defines the number of samples to include
in the running average. This mode gives equal impor-
tance to each sample interval, but quickly “forgets” us-
age prior to the oldest sample. The smaller I is, the more
closely this mode tracks elastic usage.

The configuration parameter abuse_exp computes
an exponentially decaying average. This option takes
two parameters: I is the sampling interval; D is the de-
cay factor. For example, with D = 2, the computa-
tion half-life decays every I seconds. The benefit of this
mode is that it never forgets entirely a user’s past usage,
but considers more recent usage progressively more im-
portant than older usage.

5.4 Cleaning Operation

To reclaim elastic space, Rubberd periodically checks
(via statfs) to see if the high watermark was reached.
If so, Rubberd spawns a new thread to perform the ac-
tual cleaning. The thread reads the global policy file and
applies each policy sequentially until the low watermark
is met or all policy entries are enforced.

The application of each policy proceeds in three
phases: abuse calculation, candidate selection, and ap-
plication. For user policies, Rubberd retrieves the abuse
factor of each user and then determines the number of
blocks to clean from each user proportionally accord-
ing to the abuse factor. For global policies we skip this
step since all files are considered without regard to the
owner’s abuse factor. Rubberd performs the candidate
selection and application phases only once for global
policies. For user policies, these two phases are per-
formed once for each user.

In the candidate selection phase we first retrieve from
the DB3 databases all possible candidate inode num-
bers. Then Rubberd gets the status information (size and
times) for each file using bistat, a custom bulk-inode
stat ioctl we wrote which bypasses name lookups and
retrieves a number of stat structures at once. Rub-
berd then sorts the candidates based on the policy (say,
by size or age). For global policies we iterate through
each user database and store all candidates in an array.
For user policies we simply fetch all entries from the
appropriate database. When a file pattern is specified
in policy.conT, we retrieve each file name from the
database and compare it against the pattern. We discard
that name since most files will not have any cleaning op-
erations performed on them. The last phase of the can-
didate selection is to sort the entire set of candidates as
defined in policy.conf.
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In the application phase, we start at the first element
of the candidate array and retrieve its name (or names
if a hard link exists) from the DB3 database. Then
we reclaim disk space using the administrator supplied
method. For example we, compress the file if the “gzip”
policy was configured. As we perform the application
phase, we tally the number of blocks reclaimed based on
the previously-obtained stat information; this avoids
having to call statfs after each file removal to check
if the low watermark was reached.

Each time Rubberd completes an application phase, it
runs statfs and computes the number of blocks that
still need to be cleaned. If this number is not positive
then cleaning terminates. This gives smaller abusers a
slight advantage. Since we can only reclaim space on
a per-file basis, this means that the goal for each user
is really a minimum goal. For example, suppose Rub-
berd computes that it needs to reclaim 2MB from a given
user, and then compresses the oldest file which happens
to save 3MB in size: Rubberd winds up reclaiming more
space than the minimum computed for that user. This
excess space reclaimed from the largest abusers ends up
benefiting the smallest abusers, because Rubberd will re-
claim less space from these users.

5.5 Usage Scenarios

The Equota system is flexible and can be configured to
work well in many situations. Here we describe two pos-
sible scenarios in which Equota might be used.

Large Group File Server  The first scenario is that of
a large university-wide server. Users on such a large
server usually are anonymous to each other, and will try
to get as much out of the system as possible. Gaming
would be a major concern, as there would be little to no
cooperation between users. In such a situation, both per-
sistent and elastic quotas would have to be set. Although
the purpose of elastic systems is to allow an almost infi-
nite amount of space to users, it would be necessary on
such a large system to set elastic quotas. Users would
not be allowed to use over a certain amount of elastic
space, thus avoiding denial-of-service attacks and other
gaming of the system. We expect Rubberd to monitor
disk usage more closely at intervals as short as an hour,
and reclaim a large percentage of disk space when the
system goes over the high watermark. In such a hostile
environment, Rubberd will use a long historical abuse
factor, so as to account for longer-trends of disk abuse.

Small Developer Community Server The second
scenario is that of a cooperative group of software devel-
opers. In such a group, both elastic and persistent quotas
may be unlimited: all of the disk space will be available
to elastic or persistent files. Equota’s automatic clean-
ing mechanisms may be attractive to such a group that



would rather spend time programming than managing
files. Since the group is cooperative, they are working
toward a common goal, and the chance for gaming is
small. Such a group would use Equota to mark certain
patterns of files for deletion, such as all regenerable files
(compiler-generated ones). These advanced users might
modify some of their tools to use the O_ELASTIC flag
to designate certain application-generated files elastic by
default. Such a user community will also make extensive
use of per-user policy files, for example to mark personal
MP3 files elastic.

6 Performance Evaluation

To evaluate elastic quotas in a real world operating sys-
tem environment, we implemented a prototype of our
elastic quota system on Linux 2.4.18. We present some
experimental results using our prototype EQFS and Rub-
berd implementations. We compared EQFS to Linux’s
Ext3 journaling file system. We then measured the im-
pact of Rubberd on a running system.

All of our experiments were conducted on a 1.7Ghz
Intel Pentium 4 machine, with 1228MB of RAM, running
Red Hat Linux 7.3, using a vanilla Linux kernel version
2.4.18. We believe this machine represents a small group
file server that could benefit from running the Equota
system. For the experimental file system, we used a
30GB 7200 RPM Western Digital Caviar IDE disk. All
other libraries, executables, user utilities, headers, and
system data resided on the root file system located on a
20GB 7200 RPM Western Digital Caviar IDE disk. All
tests were performed with a cold cache, achieved by un-
mounting and remounting the file systems between test
iterations. We repeated all experiments several times to
ensure stability and observed low standard deviations for
most of our tests. We report any significant standard de-
viations that arose in our tests.

6.1 Steady State System Benchmarks

To measure the performance of EQFS, we stacked it
above Ext3 and compared its performance to Ext3. We
tested the performance of EQFS in four different con-
figurations: basic Ext3 (ExXT3), EQFS stacking alone
with netlink messages turned off (NuLL), EQFS with
netlink messages turned on and Rubberd processing
messages but not writing them to DB3s (NET), and
EQFS with netlink messages and Rubberd updating
databases (FuLL). This set of configurations isolates
the overhead of each individual system component. For
non-elastic files the performance overhead is the same
as that of NuLL regardless of the configuration, because
the only overhead incurred is that of stacking. We used
two workloads for our experiments: (1) unpacking, con-
figuration, build and deletion of the Gce 3.1 source tree,
and (2) an inoder program we wrote to create a large file
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set and then remove it.

Gcece compile  The first workload we used was to con-
figure and build the Gce source. Gcec contains about
15,000 files and provides us with a fair mix of reads,
writes, and lookups. We unpacked the distribution, ran a
configure and make, and then deleted the build tree.

inoder-rm  For the second workload, we wrote a pro-
gram called inoder. It creates 1000 4KB files within
100 directories, for a total of 100,000 files. By mak-
ing a uniform dataset, we can measure the performance
more precisely. Since EQFS manipulates meta-data op-
erations (e.g., creation, deletion, etc.), this benchmark
demonstrates the worst-case overhead of our system.

6.2 Cleaning Benchmarks

To evaluate Rubberd, we measured its file system clean-
ing performance. To provide realistic results on common
file server data sets, we used a working set of files col-
lected over a period of 18 months from our own produc-
tion file server. Figure 4 shows the frequency and size
distribution of our data set. The working set includes
the actual files of 121 users, many of whom are software
developers or students. The file set includes 1,194,133
inodes and totals over 26GB in size; more than 99%
of the inodes are regular files. 24% of the users use
less than 1MB of storage; 27% of users use between 1—
100MB; 38% of users use between 100MB-1GB of stor-
age; and 11% of users consume more than 1GB of stor-
age each. Average file size in this set is 21.8KB, match-
ing results reported elsewhere [21]. The most popular
file size was 4KB, while the total size distribution was
bi-modal, peaking at 32KB and 1GB. Even though there
are only a handful of files in the 1GB range, they repre-
sent a large portion of the total space consumed by the
file set. We treated this entire working set as being elas-
tic, a worst case scenario for our system. Using EQFS
mounted in full mode on Ext3, we ran experiments with
the working set for measuring Rubberd’s performance
by cleaning elastic files using the DB3 databases.
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Cleaning Policy The Rubberd benchmark we used
measured the time it took to clean a portion of the disk
on an otherwise idle system using several cleaning poli-
cies. We chose to use the cleaning methods of gzip
and rm. We do not report results for lossy compression
because they were similar to the lossless benchmark re-
sults. We ran several types of cleaning tests to appro-
priately measure Equota’s performance. We ran incre-
mental and full cleaning tests for global gzip policies
sorted by time and size. We ran the same tests using a
user rm policy. Incremental cleaning is where the clean-
ing thread cleaned the system from 100% to 90%, from
90% to 80%, 80% to 70%, etc. until the file system was
at 0% capacity. A full cleaning test is where the file
system was cleaned from 100% to 90%, then 100% to
80%, 100% to 70%, etc. until 100% to 0%. While we
do not expect Rubberd to clean more than 5% to 10% of
the disk in practice, we chose such large values to avoid
under-representing the cost of Rubberd’s operation.

Between cleaning tests we needed to start from our
original working set before each test. We recreated our
file system from an identical image disk using dd. The
source disk had our dataset with pre-built quota files and
DB3s. This ensured that our file system was laid out in
exactly the same way for each test.

6.3 Steady State System Results

Gce Compile For the NuLL mode benchmark, we
recorded a 0.7% increase in elapsed time; 0.6% in-
crease in user time; and a 5.5% increase in system time.
For FULL mode, user time increased 0.4% from that of
EXT3, elapsed time rose 1.5% and system time rose by
5.9% for FULL mode. Rubberd consumed 1.3 CPU sec-
onds in NULL mode and 5.1 CPU seconds in FULL mode
(out of 1950 seconds total elapsed time for the bench-
mark). This demonstrates that under normal conditions
EQFS does not have a noticeable performance overhead.

Inoder-rm results The inoder test demonstrates the
overhead for meta-data operations of various equota
components. The results for inoder can be seen in Fig-
ure 5. The standard deviations for this test were between
1.7% and 13.6%. We have determined that the bursty
journaling behavior of Ext3 caused some tests to mani-
fest a higher standard deviation [4].

For our NULL, NET, and FULL configurations, file cre-
ation shows elapsed time overheads over EXT3 of 5.3%,
13.9%, and 89.9%, respectively; overheads for user time
of 2.8%, 33.0%, and 96.9%; and overheads for system
time of 14.2%, 24.2%, and 35.7%. For our NULL, NET,
and FuLL configurations, file deletion shows elapsed
overheads over EXT3 of 40.0%, 53.7%, and 206.4%, re-
spectively; overheads for user time of 20.0%, 82.8%,
and 77.8%; and overheads for system time of 51.4%,
71.3%, and 81.7%. The results show that the largest
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overhead in FULL mode is DB3 access. For NET, Rub-
berd system and user times were 1.93 and 0.71 seconds,
respectively. For FuLL, Rubberd system and user times
grew to 5.84 and 7.37 seconds, respectively. Though the
overhead for some operations is high in this intense test,
we believe that the compile benchmarks more accurately
represent actual user activity. The inoder results indi-
cate that reducing DB3 operations is beneficial. To this
end, administrators may elect to use the EQFS NuLL
mode (see Section 4.2).

6.4 Cleaning results

Compression policies At the beginning of our test,
our file system was filled to 94% of its capacity. Our
disk was cleaned from 94% to 41% (Figure 6), an effec-
tive compression ratio of 1.78:1. We could not clean to
below 41% because not all objects can be compressed
(e.g, already compressed files, directories, and the non-
elastic quota file and rubberd DB3 databases). As ex-
pected, the CPU time of this compression policy domi-
nates the test (89% of elapsed time). We also ran a full
cleaning policy, and as expected the time for a given wa-
termark was roughly the sum of the previous incremental
watermarks.
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Figure6: Elapsed time for an incremental compression policy
sorted by atime using 10% goal increments. The width of the
bar indicates the actual amount of space cleaned.

We also ran compression policies sorted by mtime,
ctime, and size. The sorting attribute had little to do
with the amount of time that a policy run took. This is
because the time a compression policy takes is primar-
ily a function of the amount of data reclaimed, which
remains constant (only the order of files changes). To



conserve space, we do not report these results.

Removal sorted by time The incremental removal
test sorted by atime showed an almost constant elapsed,
system, and user cleaning times (Figure 7). The system
and user times are small (2% of elapsed) and follow the
same trend as elapsed time (this was the case for all other
tests as well).

2 2000

<] TargetCleaned (el apsed)

§ 1500 S
g 1000 - .
F 500 - i
g_ 0 =3 U é)
L

90 80 70 60 50 40 30 20 10
Target percentage to clean (by atime)

Figure 7: Elapsed time for incremental removal sorted by
atime using 10% goal increments. The width of the bar indi-
cates the actual amount of space cleaned.

Since files are chosen by atime, and size is not taken
into consideration when choosing the file to be cleaned,
the results take on a constant complexity. Our results
show that cleaning took place between 94% and 5%.
The disk can not be cleaned to zero because not all di-
rectories will be removed, and the quota file and DB3
databases, which take up less than 1% of the total disk
space, are not elastic. Variations in these results can
be seen in the low cleaning times for low watermarks
90% and 60%. The fileset we used had two large files
that fell within the 94-90% and 70-60% intervals when
sorted by atime. The higher numbers for the 10-5% in-
terval were the result of many small files in that range
of atimes. This shows us that removal is a function of
meta-data operations. In a case where you want constant
cleaning penalties, such as a system with a small low
watermark, it is best to use an atime sort algorithm. Full
removal policies are similar to full compression policies,
in that a given watermark takes roughly the sum of pre-
vious incremental watermarks. We do not report results
for sorting by mtime and ctime, because they are com-
parable to atime.

Removal sorted by size  Incremental cleaning policies
sorted by size showed different results than those sorted
by atime. When cleaning by size there is a linear rela-
tionship between the low watermark and the time it takes
to clean. The elapsed, system, and user times increase
linearly with each iteration of this incremental policy
(Figure 8). These results were expected because the re-
moval of a file is a meta-data operation and is mostly
independent of the size of the file being removed.

Full cleaning for a given watermark is again roughly
the sum of all previous incremental watermarks. How-
ever, this yields the interesting property that as water-
marks decrease the progression of time is O(N?) for full

cleaning by size.
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Figure 8: Elapsed time for incremental clean sorted by size
using 10% goal increments. The width of the bar indicates the
actual amount of space cleaned.

For both the full and incremental policies (by size),
Rubberd cleaned to its first few goals with the deletion of
the first few large files. As more files are deleted, smaller
files are selected for removal, and thus it takes more of
them to meet a goal. Since the goals are size based, as
time goes on, it takes longer to meet lower watermarks
for the file system. In normal operation, it will not be
necessary to clean many small files when using a size-
based policy since the larger files will hopefully bring
the system quickly below the low watermark.

7 Conclusions and Future Work

The main contribution of this work is that we developed
a system that reduces storage management costs, by ex-
tending the lifetime of disks up to 72%, through intelli-
gent space reclamation policies. Three additional con-
tributions include the following. First, we utilized user
and application-specific knowledge to increase the use-
fulness of storage management policies. For example,
we provide several different ways to decide when a file
becomes elastic: from the directory’s mode, from the
file’s name, from the user’s login session, and even by
the application itself. Second, we use transparent com-
pression as another layer in the HSM system, without
the need for administrators to manage another device.
Third, through the concept of an abuse factor we have
introduced historical use into quota systems.

We conducted a comprehensive study which demon-
strates that storage consumption and associated manage-
ment costs continue to grow. Our study also shows that
significant space savings are possible, which we believe
will directly translate into management cost savings.

Our Linux prototype includes many features that al-
low both site administrators and users to customize elas-
tic quota policies. Our policy engine is flexible, allow-
ing a variety of methods for elastic space reclamation.
Our evaluation shows that the performance overheads
are small and acceptable for day-to-day use. Addition-
ally, our work provides an extensible framework for new
or custom policies to be added. Through the use of



stacking, we can extend these benefits to any file system.
We plan to expand the definition of persistent and
elastic files to include file lifetimes and priorities. A file
lifetime would include a minimum lifetime and a maxi-
mum lifetime. A persistent file has an infinite minimum
lifetime and an elastic file has a minimum lifetime of
zero. The minimum lifetime would be useful for data
that may not be relevant for longer than some prede-
fined time period. A maximum lifetime would enable
the automatic migration or deletion of files; this could be
valuable because it would ensure a company’s records
retention policy is enforced or personal information is
not available after a certain point. File priorities could
determine when and how files should be backed up or
migrated. We believe that file lifetimes and priorities
should be first-class attributes that all file systems sup-
port, and plan to modify the OS and VFS accordingly.
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