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Abstract
Stackable file systems can provide extensible file system

functionality with minimal performance overhead and devel-
opment cost. However, previous approaches are limited in
the functionality they provide. In particular, they do not sup-
port size-changing algorithms, which are important and use-
ful for many applications, such as compression and security.
We propose fast index files, a technique for efficient support
of size-changing algorithms in stackable file systems. Fast
index files provide a page mapping between file system lay-
ers in a way that can be used with any size-changing algo-
rithm. Index files are designed to be recoverable if lost and
add less than 0.1% disk space overhead. We have imple-
mented fast indexing using portable stackable templates, and
we have used this system to build several example file sys-
tems with size-changing algorithms. We demonstrate that
fast index files have very low overhead for typical work-
loads, only 2.3% over other stacked file systems. Our sys-
tem can deliver much better performance on size-changing
algorithms than user-level applications, as much as five times
faster.

1 Introduction

Since the early days of UNIX, file systems have proven
to be a useful abstraction for extending system functional-
ity. Stackable file systems are an effective infrastructure for
creating new file system functionality with minimal perfor-
mance overhead and development cost[10, 12, 25, 27, 31,
32]. With stacking, file systems can be developed indepen-
dently and then stacked on top of each other to provide new
functionality. For example, an encryption file system can be
stacked on top of a native file system to provide secure data
storage[30].

While many stackable file systems have been developed,
all of them share a common limitation in functionality. None
of them are able to support size-changing algorithms (SCAs),
which are important and useful for many applications. Ex-
amples of such applications include compression which can
save disk space, data format encodings for internationaliza-
tion which can automatically translate data between unicode

and ASCII, and size-changing encryption algorithms which
can provide added security. Some ideas have been previously
suggested for supporting SCAs in stackable file systems by
using cache coherency mechanisms[11, 15], but no complete
solution has ever been developed or implemented, much less
demonstrated.

The challenge with supporting SCAs in stackable file sys-
tems is that the file data layout and page offsets can change
from layer to layer. Consider the case of an upper-level com-
pression file system stacked on top of a lower-level native file
system. When an application writes a file through the com-
pression file system, the file system will compress the file
data, then pass the compressed data to the native file system,
which will then store it on disk. The result is an encoded file
stored in the lower-level file system. Suppose the application
now wants to read a block of data at a given file offset back
from the file. The corresponding data in the encoded file then
needs to be retrieved. However because of compression, the
file offset of the data in the encoded file is generally not the
same as the one provided by the application to the file sys-
tem. The key problem that needs to be addressed is how to
map file offsets between layers in stackable file systems. The
problem is complicated by the fact that the mapping depends
on the SCA used.

We propose fast index files as a solution for supporting
SCAs in stackable file systems. Fast index files provide a
way of mapping file offsets between upper and lower layers
in stackable file systems. Since the fast index file is just a
mapping, a lower-layer file system does not need to know
anything about the details of the SCA used by an upper-level
file system. Each encoded file has a corresponding fast index
file, which is simply stored in a separate file in the lower-
layer file system. The index file is more than 1000 times
smaller than the original data file, resulting in negligible ad-
ditional storage requirements. The index file is designed to be
recoverable if it somehow is lost so that it does not compro-
mise the reliability of the file system. Finally, the index file
is designed to deliver good file system performance with low
stacking overhead, especially for common file operations. In
particular, we introduce an optimization called fast tails to
provide performance improvements for writes to the end of a
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file, a common file operation.
We have implemented fast indexing using stackable

templates[31]. This allows us to provide support for SCAs
in stackable file systems in a portable way. To demonstrate
the effectiveness of our approach, we have used our imple-
mented system to build and measure several example SCA
file systems, including a compression file system. Our per-
formance results show (1) that fast index files have very low
overhead for typical file system workloads, only 2.3%, and
(2) that such file systems can deliver much better perfor-
mance on size-changing algorithms than user-level applica-
tions, as much as five times better.

This paper describes fast index files and is organized as
follows. Section 2 details the design of the index files in re-
lation to file operations, and discusses several optimizations.
Section 3 overviews important implementation issues. We
evaluate our system using several example file systems in
Section 4. We survey related work in Section 5. Finally we
conclude and discuss future work in Section 6.

2 Design

Traditional file system development is often done using low
level file systems that interact directly with device drivers.
Developing file systems in this manner is difficult and time
consuming, and result in code that is difficult to port to other
systems. Stackable file systems build on a generalization of
in-kernel files calledvnodes[16], by allowing for modular,
incremental development of file systems using astackable
vnode interface[13, 24, 27]. Stacking is a technique for mod-
ularizing file system functions by allowing one vnode inter-
face implementation to call another, building upon existing
implementations and changing only that which is needed.
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Figure 1:Basic Stacking. A system call is translated into a generic
VFS function, which translates into a file-system specific function
in our stackable Wrapper file system. Wrapfs then modifies the
data passed to it and calls the file system stacked below it with the
modified data.

Figure 1 shows the structure for a simple, single-level
stackable wrapper file system called Wrapfs. System calls
are translated into VFS calls, which in turn invoke their

Wrapfs equivalents. Wrapfs then invokes the respective
lower levelfile system operations. Wrapfs calls the lower
level file system without knowing who or what type it is. In
this example, Wrapfs receives user data to write to the lower
level file system. Wrapfs may, for example, implement a
transparent encryption file system and choose to encrypt the
data before passing it to the lower level file system.

Wrapfs is a stackable template system[31] with ports to
Linux, Solaris, and FreeBSD. It provides basic stacking func-
tionality without changing other file systems or the kernel.
Wrapfs allows developers to define data encoding functions
that apply to whole pages of file data, making it easy to pro-
duce, for example, a limited subset of encryption file sys-
tems. Like other stacking systems, Wrapfs, however, did not
support encoding data pages such that the result is of a dif-
ferent size.

Size-changing algorithms (SCAs) may change data offsets
arbitrarily: shrinking data, enlarging, or both. A file encoded
with an SCA will have offsets that do not correspond to the
same offsets in the decoded file. In a stacking environment,
the lower level file system contains the encoded files, while
the decoded files are accessed via the upper layer. To find
where specific data resides in the lower layer, an efficient
mapping is needed that can tell where is the starting offset of
the encoded data for a given offset in the original file.

We propose an efficient mapping for SCA stackable file
systems based on anindex file. The index file is a separate
file that serves as a fast index into an encoded file. It is used
to store meta-data information identifying offsets in an asso-
ciated encoded file. As shown in Figure 2, the basic idea is
that an upper level file system can efficiently access the de-
coded version of an encoded file in a lower level file system
by using the meta-data information in an associated index file
that resides on the lower level file system.

Decoded (original) File

Encoded
Data File

Index
File Lower Layer

Upper Layer

Figure 2:Each original data file is encoded into a lower data file.
Additional meta-data index information is stored in an index file.
Both the index file and the encoded data files reside on the lower
level file system.

Throughout this paper, we will use the following three
terms. An “original file” is the complete un-encoded file that
the user accessing our stackable file system sees; the “data
file” is the SCA-encoded representation of the original file,
which encodes whole pages of the original file; the “index
file” maps offsets of encoded pages between their locations
in the original file and the data file.

Our system encodes and decodes whole pages, which
maps well to file system operations. The index table assumes
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this and stores offsets of encoded pages as they appear in the
encoded file.

To illustrate how this works, consider an example of a file
in a compression file system as shown in Figure 3. The figure
shows the mapping of offsets between the upper (original)
file, and the lower (encoded) data file. To find out the bytes
in page 2 of the original file, we read the data bytes 3000–
7200 in the encoded data file, decode them, and return to the
VFS that data in page 2.
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Figure 3:An example of a file system that shrinks data size (com-
pression). Each upper page is represented by an encoded lower
“chunk.” Holes are supported too. The mapping of offsets is shown
in Table 1.

To find out which encoded bytes we need to read from the
lower file, we consult the index file, shown in Table 1. The
index file tells us that the original file has 6 pages, that its
original size is 21500 bytes, and then it lists the ending off-
sets of the encoded data for an upper page. Finding the lower
offsets for the upper page 2 is a simple linear dereferencing
of the data in the index file; we do not have to search the
index file linearly.

2.1 The Index File

Word Representing Regular With Fast
IDX File Tail (ft)

1 (20 bits) # pages 6 5
1 (12 bits) flags ft=0, ... ft=1, ...
2 orig. file size 21500 21500
3 page 0 1100 1100
4 page 1 3000 3000
5 page 2 7200 7200
6 page 3 7200 7200
7 page 4 10000 10000
8 page 5 10120

Table 1:Format of the index file for Figures 3 and 4. Fast Tails are
described in Section 2.2.1. The first word encodes both the number
of pages and flags.

The index information is stored in a separate small file.
We measured the impact that the consumption of an addi-
tional inode would have on typical file systems in our envi-
ronment. We found that disk data block usage is often 6–8
times greater than inode utilization on disk-based file sys-
tems, leaving plenty of free inodes to use.

For a given data fileF , we create an index file called
F .idx . We decided to store the index table in a separate
file for three reasons:

1. The index file is small. We store one word (4 bytes) for
each data page (usually 4096 bytes). On average, the
index table size is 1024 times smaller than the original
data file.

2. The index contains meta-data—original file size and
page offsets—which are more logically stored outside
the data itself, as is the case with many file systems.
That allows us to control the data file and the index file
separately.

3. Since the index file is relatively small, we can read it
completely into kernel memory and manipulate it in
there. To improve performance, we write the final mod-
ified index table only when the original file was closed
and all of its data flushed to stable media. (Section 2.3.2
discusses how to recover from a lost index file.)

We read the index file into memory as soon as the main
file is open. That way we have fast access to the index data
in memory. The index information for each page is stored
linearly, and each index entry takes 4 bytes. That way we
can compute the needed index information very simply, and
find it from the index table using a single dereference into
an array of 4-byte words (integers). We write any modified
index information out when the main file is closed and its
data flushed to stable media.

The index file starts with a word that encodes the number
of pages in the corresponding original data file and flags. We
use the lower 20 bits for the number of pages because220

4KB pages (typical on i386 and SPARCv8 systems) would
give us the maximum file size we can encode in 4 bytes, ex-
plained next. We use the remaining 12 bits for special flags
such as whether fast tails were encoded in this file, whether
holes were encoded in this file, etc.

The index file also contains the original file’s size (second
word). We store this information in the index file so that
commands like “ls –l” and others using stat(2) would work
correctly. That is, if a process looks at the size of the file
through the upper level file system, it would get the original
number of bytes and blocks. The original file’s size can be
computed from the starting offset of the last data chunk in the
encoded file, but it would require decoding the last (possibly
incomplete) chunk (bytes 10000–10120 in the encoded file
in Figure 3) which can be an expensive operation depending
on the size-changing algorithm. Storing the original file size
in the index file is a speed optimization that only consumes
4 more bytes—in a physical data block that most likely was
already allocated. By using 4 bytes for the original file size,
we are currently limiting the maximum supported decoded
file size in our system to 4GB. That is not a major concern at
this time, since files greater than 4GB are still fairly rare.
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2.2 File Operations

The cost of size-changing algorithms can be high. There-
fore it is important to ensure that we minimize the number
of times we invoke these algorithms and the number of bytes
they have to process each time. The way we store and access
encoded data chunks can impact this performance, as well as
the types and frequencies of file operations. Files accesses
follow several patterns:

� The most popular file system operation is stat(), which
results in a file lookup. Lookups account for 40–50% of
all operations[19, 23].

� Most files are read, not written. The ratio of reads to
writes is often 4–6[19, 23]. For example, compilers and
editors read in many header and configuration files, but
only write out a handful of files.

� Files that are written are often written from beginning
to end. Compilers, user tools like “cp”, and editors such
as emacs write whole files in this way. Furthermore, the
unit of writing is usually set to match the system page
size. We have verified this by running a set of common
tools and recorded the write start offsets, size of write
buffers, and the current size of the file.

� Files that are not written from beginning to end are often
appended to. The number of appended bytes is often
small. This is true for various log files that reside in
/var/log, as well as Web server access logs.

� Very few files are written in the middle. This hap-
pens most often when the GNU linker (gnu-ld) creates
large binaries: it creates a sparse file of the target size,
and then seeks and writes the rest of the file in a non-
sequential manner. To estimate the frequency of writes
in the middle, we instrumented a null-layer file system
with a few counters. We then measured the number and
type of writes for our large compile benchmark (Section
4.1). We counted 9193 writes, of which 58 (0.6%) were
writes before the end of a file.

� All other operations account for a small fraction of file
operations[19, 23].

Given the above access patterns, we designed our system
to optimize performance for the more common cases, while
not harming performance unduly when the seldom-executed
cases occur.

To handle file lookups fast, we store the original file’s
size in the index table. The index file is usually 1024 times
smaller than the original file. Due to locality in the creation
of the index file, we assume that its name will be found in
the same directory block as the original file name, and that
the inode for the index file will be found in the same inode
block as the encoded data file. Therefore reading the index
file requires reading one additional inode and often only one
data block. After the index file is read into memory, return-
ing the file size is done by copying the information from the
index table into the “size” field in the current inode structure.

All other attributes of the original file come from the inode
of the actual encoded file. Once we read the index table into
memory, we allow the system to cache its data for as long
as possible. That way, subsequent lookups will find files’
attributes in the attribute cache.

Since most file systems are structured and implemented in-
ternally for access and caching of whole pages (usually 4KB
or 8KB), we decided to encode the original data file in whole
pages. In this way we improve performance because our en-
coding unit is the same as that used by the paging system, and
especially the page cache. This also helped simplify our code
because the interfacing with the VFS and the page cache was
more natural. For file reads, the cost of reading in a data page
is fixed: a fixed offset lookup into the index table gives us the
offsets of encoded data on the lower level data file; we read
this encoded sequence of bytes, decoded it into exactly one
page, and return that decoded page to the user.

Since our stackable system is page based, it made it easier
for us to write whole files, especially if the write unit was one
page size. In the case of whole file writes, we simply encode
each page size unit, add it to the lower level encoded file, and
add one more entry to index table. We discuss the cases of
file appends and writes in the middle in Sections 2.2.1 and
2.2.2, respectively.

We did not have to design anything special for handling
all other file operations. We simply treat the index file at
the same time we manipulate the corresponding encoded data
file. An index file is created only for regular files; we do not
have to worry about symbolic links, because the VFS will
only call our file system to open a regular file. When a file is
hard-linked, we also hard-link the index file, using the name
of the new link with a the “.idx” extension added. When a
file is removed from a directory or renamed, we apply the
same operation to the corresponding index file. We can do so
in the same context of the file system operation, because the
directory in which the operation occurs is already locked.

2.2.1 Fast Tails

One common usage pattern of files is to append to them.
Often, a small number of bytes is appended to an existing
file. Encoding algorithms such as compression and encryp-
tion are more efficient when they encode larger chunks of
data. Therefore it is better to encode a larger number of bytes
together. Our design calls for encoding whole pages when-
ever possible. Table 1 and Figure 3 show that only the last
page in the original file may be incomplete, and that incom-
plete page gets encoded too. If we append, say, 10 more
bytes to the original (upper) file of Figure 3, we have to keep
it and the index file consistent: we must read the 1020 bytes
from 20480 (20K) until 21500, decode them, add the 10 new
bytes, encode the new 1030 sequence of bytes, and write it
out in place of the older 1020 bytes in the lower file. We also
have to update the index table for two things: the total size
of the original file is now 21510, and word number 8 in the
index file may be in a different location than 10120 (depend-
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ing on the encoding algorithm, it may be greater, smaller, or
even the same).

The need to read, decode, append, and re-encode a chunk
of bytes for each append grows worse as the number of bytes
to append is small while the number of encoded bytes is
closer to one full page. In the worst case, this method yields
a complexity ofO(n2) in the number of bytes that have to be
decoded and encoded, multiplied by the cost of the encoding
and decoding of the SCA. To solve this problem, we added a
fast tailsrun-time mount option that allows for up to a page
size worth of unencoded data to be added to an otherwise
encoded data file. This is shown in the example in Figure 4.
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Figure 4:Fast-tails. A file system similar to Figure 3, only here we
store up to one page full of un-encoded raw data. When enough raw
data is collected to fill a whole fast-tail page, that page is encoded.

In this example, the last full page that was encoded is page
4. Its data bytes end on the encoded data file at offset 10000
(page 2). The last page of the original upper file contains
1020 bytes (21500 less 20K). So we store these 1020 bytes
directly at the end of the encoded file, after offset 10000. To
aid in computing the size of the fast tail, we add two more
bytes to the end of the fast tail, listing the length of the fast
tail. (Two bytes is enough to list this length, since typical
page sizes are less than216 bytes long.) The final size of the
encoded file name is now 11022 bytes long.

With fast tails, the index file does not record the offset of
the last tail, as can be seen from the right-most column of
Table 1. The index file, however, does record in its flags field
(12 upper bits of the first word) that a fast tail is in use. We
put that flag in the index table to speed up the computations
that depend on the presence of fast tails. We put the length of
the fast tail in the encoded data file to aid in reconstruction
of a potentially lost index file, as described in Section 2.3.2.

When fast tails are in use, appending a small number of
bytes to an existing file does not require data encoding or
decoding, which can speed up the append operation consid-
erably. When the size of the fast tail exceeds one page, we
then encode the first page worth of bytes, and start a new fast
tail.

Fast tails, however, may not be desirable all the time ex-
actly because they store unencoded bytes in the encoded file.
If the SCA used is an encryption one, it is insecure to expose
plaintext bytes at the end of the ciphertext file. For this rea-

son, fast tails is a run-time global mount option that affects
the whole file system mounted with it.

2.2.2 Write in the Middle

User processes can write any number of bytes in the middle
of an existing file. With our system, whole pages are encoded
and stored in a lower level file as individual encoded chunks.
A new set of bytes written in the middle of the file may en-
code to a different number of bytes in the lower level file.
If the number of new encoded bytes is greater than the old
number, we have to shift the remaining encoded file outward
to make room for the new bytes. If the number of bytes is
smaller, we have to shift the remaining encoded file inward
to cover unused space. In addition, we have to adjust the
index table for each encoded data chunk which was shifted.

To improve performance, we shift data pages in memory
and keep them in the cache as long as possible. That way,
subsequent write-in-the-middle operations that may result in
additional inward or outward shifts will only have to manip-
ulate data pages already cached and in memory. Of course,
any data page shifted is marked as dirty, and we let the paging
system flush it to disk when it sees fit.

Note that data that is shifted in the lower level file does
not have to be re-encoded. This is because that data still
represents the actual encoded chunks that decode into their
respective pages in the upper file. The only thing remaining
is to change the end offsets for each shifted encoded chunk
in the index file.

We examined several alternatives that would have encoded
the information about inward or outward shifts in the index
table, and even possibly some of the shifted data, but we re-
jected them for several reasons: (1) it would have compli-
cated the code considerably, (2) it would have made recovery
of an index file very difficult, and (3) it would have resulted
in fragmented data files that would have required a defrag-
mentation procedure. Since the number of writes in the mid-
dle we measured was so small (0.6% of all writes), we do
not consider our simplified design to cost too much in per-
formance. Section 4 details our benchmarks and includes
testing of files written in the middle.

2.2.3 Truncate

One interesting design issue we faced was with the trun-
cate(2) system call. Although this call occurs less than 0.02%
of the time[19, 23], we still had to ensure that it behaved the
same. Truncate can be used to shrink a file as well as enlarge
it, potentially making it sparse with new “holes.” We had
four cases to deal with:

1. Truncating on a page boundary. In this case, we truncate
the encoded file exactly after the end of the chunk that
now represents the last page of the upper file. We update
the index table accordingly: it has fewer pages in it.

2. Truncating in the middle of an existing page. In that
case, we result in a partial page: we read and decode the
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whole page, and re-encode the bytes within representing
the part before the truncation point. We update the index
table accordingly: it now has fewer pages in it.

3. Truncating in the middle of a fast tail. In that case we
just truncate the lower file where the fast tail is actually
located. We then update the size of the fast tail at its end,
and update the index file to indicate the (now) smaller
size of the original file.

4. Truncating past the end of the file is akin to extend-
ing the size of the file and possibly creating zero-filled
holes. We read and re-encode any partially filled page
or fast tail that used to be at the end of the file before the
truncation; we have to do that because that page now
contains a mix of non-zero data and zeroed data. All
other pages afterwards are made up of zeros, and thus
need not be encoded: we just mark them in the index
file as zero-filled pages, as shown in Table 1 and Figure
3.

2.3 Additional Benefits

The discussion so far in this section concentrated on perfor-
mance concerns in our system, since it is an important part
of our design. We now consider three additional concerns:

1. Low Resource Usage: without harming performance,
our system uses as little disk space for storing the in-
dex file. The index file is a small fraction of the size of
the original file. A special option to support holes and
sparse files is available.

2. Consistency: since the index file represents important
meta-data that is stored separately, it can be recovered
on files without holes.

3. Portability : our system does not fundamentally change
on disk data structures, and it uses stackable file sys-
tem interfaces. That way it can be ported with rela-
tive ease to other stacking systems and other operating
systems[31].

2.3.1 Low Resource Usage

We designed our system to use little additional resources over
what would be consumed normally. When considering the
resource consumption, however, we gave a higher priority to
performance concerns.

The index file was designed to be small, as seen in Table 1.
It usually includes four bytes for the size of the full original
file, four bytes indicating the number of page entries (includ-
ing flags), and then that many index entries, four bytes each.
For each page of 4096 bytes we store 4 bytes in the index file.
This results in a reduction size factor of over 1000 between
the size of the original file and the index file. Specifically,
an index file that is exactly 4096 bytes long (one disk block
on an EXT2 file system formatted with 4KB blocks) can de-
scribe an original file size of 1022 pages, or 4,186,112 bytes
(almost 4MB).

By keeping the index file small, we ensure that the con-
tents of most index files can be read and stored in memory
in under one page, and can then be manipulated in fast mem-
ory. Since we create index files along with the encoded data
files, we benefit from locality: the directory data block and
inode blocks for the two files are already likely to be in mem-
ory, and the physical data blocks for the two files are likely to
reside in close proximity to each other on the physical media.

The size of the index file is less important for SCAs which
increase the data size, such as unicoding, uuencoding, and
most forms of encryption. The more the SCA increased the
data size, the less significant the size of the index file be-
comes. Even if the case of SCAs that decreased data size,
such as compression, the size of the index file may not be
as important given the savings already gained from compres-
sion.

To save even further of resource usage, we efficiently sup-
port zero-length files, as well as sparse files. A zero-length
original data file is represented by a zero-length index file.
(When the encoded file exists but the index file does not, it
indicates that the index file was lost, and can be recovered as
described in Section 2.3.2.)

Sparse files are files with “holes”—regions that are filled
with zeros. Many file systems optimize disk usage by not
writing zero-filled pages to stable media, instead skipping
holes when chaining non-zero data blocks. Often, the MMU
hardware is used by the operating system to create and zero-
fill pages representing holes in files.

We support holes in files on a page-by-page basis. They
are indicated in the index table as two or more consecutive
entries that end on the same offset. In other words, the dif-
ference between them is zero bytes. Such an entry is treated
as a zero-filled page in the upper, decoded file. Table 1 and
Figure 3 show that page 3 is a hole represented by the lower
level encoded data file as zero bytes.

This design to support holes has three implications. First,
holes take no space on the encoded file, only four bytes per
hole in the index file. Second, holes need not be encoded or
decoded, which improves performance. Third, holes are not
possible to recover if the index file is lost; we discuss this
issue in the next section.

2.3.2 Index File Consistency

By the introduction of a separate index file to store the index
table, we now have to maintain two files consistently.

Normally, when a write or create operation occurs on a
file, the directory of that file is locked. We keep the directory
locked also when the we update the index file, so that both
the encoded data file and the index file are guaranteed to be
written correctly.

We assume that encoded data files and index files would
not get corrupt internally due to media failures. This situ-
ation is no worse than normal file systems where a random
data corruption may not be possible to fix. However, we do
concern ourselves with two potential problems: (1) a par-
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tially written or (2) a lost index file.

An index file could be partially written if the file system is
full or the user ran out of quota. In the case where we were
unable to write the complete index file, we simply remove
it and print a warning message on the console. The absence
of the index file on subsequent file accesses will trigger an
in-kernel mechanism to recover the index file.

An index file could be lost if it was removed intentionally
(say after a partial write) or unintentionally by a user directly
from the lower file system. If the index file is lost or does not
exist, we can no longer tell easily where encoded bytes were
stored. In the worst case, without an index file, we have to
decode the complete file to locate any arbitrary byte within.
However, since the cost of decoding a complete file and re-
generating and index table are nearly identical (see Section
4.3), we chose to regenerate immediately the index table if it
does not exist, and then proceed as usual as if the index file
exists.

We designed our system so that the index file can be recov-
ered reliably in most cases. The three pieces of information
needed to recover an index file given an encoded data file are
(1) the SCA used, (2) the page size of the system on which
the encoded data file was created, and (3) whether fast tails
were used. These three pieces of information are available in
the kernel to the running file system.

To recover an index file we read an input encoded data
file and decode the bytes until we fill out one whole page of
output data. We rely on the fact that the original data file was
encoded in units of page size. The offset of the input data
where we finished decoding onto one full page becomes the
first entry in the index table. We continue reading input bytes
and produce more full pages and more index table entries.
If fast tails were used, then we read the size of the fast tail
from the last two bytes of the encoded file, and do not try to
decode it (since it was written un-encoded).

If fast tails were not used and we reached the end of the
input file, that last chunk of bytes may not decode to a whole
output page. In that case, we know that was the end of the
original file, and we mark the last page in the index table as
a partial page. While we are decoding pages, we sum up the
number of decoded bytes and fast tails, if any. The total is
the original size of the data file, which we record in the index
table. We now have all the information necessary to write the
correct index file and we do so.

The one case where we might not be able to recover an
index file correctly is when the original data file contained
holes. In that case, when reading the input encoded data,
we can only find the non-hole pages because holes are not
represented at all in the encoded data file: they are only rep-
resented in the index file as two consecutive entries with the
same offset. For this reason, we also allow support for holes
to be turned on or off at run time using a mount time flag.
Therefore, support for holes represents a compromise be-
tween space (and some performance) savings and recover-
ability of the index file.

2.3.3 Portability

Our system is based on our Wrapfs templates. The templates
provide stacking functionality for a given operating system.
While the implementation of each template is different, they
all provide a unified API for developers[29, 31]. If develop-
ers want to, say, modify file data in a consistent manner, they
only need to write two routines:encode data and de-
code data . One routine is used to encode data pages, and
another is used to decode data pages. We changed the tem-
plates to support SCAs without changing the encoding and
decoding routines’ prototypes: developers now may return
arbitrary length buffers rather than being required to fill in
exactly one output page.

We recently introduced a language called FiST, used to
describe stackable file systems at a high level[32]. The lan-
guage uses file system features common across different op-
erating systems. The language code generator, fistgen, reads
in a FiST input file that describes a new stackable file sys-
tem, reads in the stackable templates for the given operat-
ing system, and together it produces a new file system with
the desired functionality. With this language, we are able to
achieve cross-platform portability for stackable file systems.

Our SCA work is done completely in the templates. The
only change we introduced in the FiST language is to add
another high level directive that tells the code generator to
include SCA support. We decided to make this code optional
because it adds overhead and is not needed for file systems
that do not change data size. Using FiST, it is possible to
write stackable file systems that do not pay the overhead of
SCA support if they do not require changing the size of data.
Furthermore, FiST can generate fan-out stackable file sys-
tems, ones that mount on more than one directory concur-
rently; it is not necessary that SCA support be active for each
branch of the fan-out.

Currently, SCA support is available for Linux 2.3 only.
When we port our SCA support to the other templates, we
would be able to describe an SCA file system once in the
FiST language. From this single description we could pro-
duce a number of working file system modules.

3 Implementation

Our original templates, called Wrapfs, served as a good ba-
sis for doing this SCA work, since they already had all of
the operating system specific stacking infrastructure, and ex-
ported an API to developers that asks them to implement one
encoding function and one decoding function. We therefore
updated our Wrapfs templates based on the design depicted
in Section 2. In this section we describe a few interesting im-
plementation issues for support of size-changing algorithms.
We also describe three sample file systems we implemented
using our new templates.

We implemented our SCA support in Linux 2.3, using our
Wrapfs templates. Our Wrapfs templates are ported to So-
laris and FreeBSD as well, but we concentrated our efforts on
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Linux. The intent of this paper is to show the design and im-
plementation of SCA support and evaluate its performance.
Based on our past experiences with other operating systems,
we do not expect the performance savings to be significantly
different on other platforms.

As mentioned in Section 2.1, we write any modified in-
dex information out when the main file is closed and its data
flushed to stable media. In Linux, neither data nor meta-data
are automatically flushed to disk. Instead, a kernel thread
(kflushd) runs every 5 seconds and asks the page cache to
flush any file system data that has not been use recently, but
only if the system needs more memory. In addition, file data
is forced to disk when either the file system is unmounted or
the process called an explicit flush() or fsync(). We take ad-
vantage of this delayed write to improve performance, since
we write the index table when the rest of the file’s data is
written.

To support writes in the middle correctly, we have to make
an extra copy of data pages into a temporary location. The
problem is that when we write a data page given to us by the
VFS, we do not know what this data page will encode into,
and how much space it would require. If it requires more
space, then we have to shift data outward in the encoded data
file before writing the new data. For this first implementa-
tion, we chose the simplified approach of always making the
temporary copy. Our code has not been optimized much yet;
we discuss avenues of future work in Section 6.1.

3.1 Examples

We implemented three file systems based on our updated
templates. For each file system, all we had to implement
were two routines: encode data and decode data .
These routines take one input buffer, and can produce an out-
put buffer of any size.

1. gzipfs: this is a compression file system using the De-
flate algorithm[5] from the zlib-1.1.3 package[7, 9], the
same algorithm used by GNU zip (gzip))[6, 8]. This
file system is intended to demonstrate an algorithm that
(usually) reduces data size.

2. uuencodefs: this file system is intended to illustrate an
algorithm that increased the data size. This simple al-
gorithm converts every 3-byte sequence into a 4-byte
sequence. Uuencode produces 4 bytes that can have
at most 64 values each, starting at theASCII character
for space (20h). We chose this algorithm over encryp-
tion algorithms that run in Electronic Codebook mode
(ECB) or Cipher Block Chaining mode because they
do not increase the data size by much[26]. With uuen-
codefs we were able to increase the data size of the out-
put by one-third.

3. copyfs: this file system simply copies its input bytes
to its output, without changing data sizes. We wrote
this simple file system to serve as a base file system
to compare to gzipfs and uuencodefs. Copyfs exercises

all of the index management algorithms and other size-
changing algorithm support without the costs of encod-
ing or decoding pages.

4 Evaluation

Our overall goals in evaluating this work are to show that
we perform well compared to user-level tools, that reads and
writes are fast, that lookups are fast, that fast-tails help for
repeated small appends, and that writes in the middle do
not impact overall performance significantly. For compres-
sion, we also aim to show the space savings for different data
types.

We conducted a set of benchmarks intended to test the per-
formance of our system and the examples we built. We ran
the tests on four identical 433Mhz Intel Celeron machines
with 128MB of RAM, a Quantum Fireball lct10 9.8GB IDE
disk drive. We installed a Linux 2.3.99-pre3 kernel on this
machine.

Each benchmark was run 10 times on a quiet system, using
one of several test file systems: ext2fs, wrapfs, copyfs, uuen-
codefs, and gzipfs. We include figures for ext2fs because it
is the basis for comparing to the remaining four stackable file
systems. We mount the latter four over ext2fs. Wrapfs sim-
ply copies data pages without any SCA support; this helps to
evaluate the cost of data page copying in the kernel. Copyfs
copies data pages but includes SCA support; this lets us mea-
sure the impact of manipulating the index file in kernel and
on disk, and the rest of the SCA code. Uuencodefs uses a
simple algorithm that increases data size, while gzipfs usu-
ally reduces data size; this way we measure both types of
size-changing file systems.

Since compression is sensitive to the type of data being
compressed, we tested gzipfs on several types of data, rang-
ing from easy to compress to difficult to compress:

1. A file containing the character “a” repeatedly, should
compress really well.

2. A file containing English text, actually written by users,
collected from our Usenet News server. We expected
this file to compress well

3. A file containing a concatenation of many different bi-
naries we located on the same host system, such as those
found in /usr/bin and /usr/X11/bin. This file should be
more difficult to compress because it contains fewer pat-
terns useful for compression algorithms.

4. A file containing previously compressed data. We
took this data from Microsoft NT’s Service Pack 6
(sp6i386.exe), which is a self-unarchiving large exe-
cutable. We expect this file to be very difficult to com-
press.

For each benchmark, we only read, written, or compiled
the test files in the file system being tested. All other user
utilities, compilers, headers, and libraries reside outside the
tested file system.
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To ensure that we used a cold cache for each test, we un-
mounted all file systems which participated in the given test
after the test was done, and mounted the file systems again
before running the next iteration of the test. We verified
that unmounting a file system indeed flushes and discards all
possible cached information about that file system. In one
benchmark we also measured the warm cache performance,
to show the effectiveness of our code’s interaction with the
page cache.

We ran all tests without the fast tails option, described in
Section 2.2.1. We also repeated all tests with the fast tails
option turned on. We report these figures whenever fast tails
made a difference.

We measured the standard deviations in our experiments
and found them to be small, less than 1% for most micro-
benchmarks. We report deviations which exceeded 1% with
their relevant benchmarks.

4.1 General Benchmarks

For testing overall performance, we investigated three tests:
The Modified Andrew Benchmark (MAB)[21], am-utils (The
Berkeley Automounter)[1], and Bonnie[4].

Modified Andrew Benchmark: the MAB benchmark
consists of five phase: making directories, copying files,
recursive listing, recursive scanning of files, and compila-
tion. MAB was designed at a time when hardware was much
slower and resources scarce. On our hardware, MAB com-
pleted in under 10 seconds of elapsed time, with little vari-
ance among different tests. We therefore opted to use a more
intensive compile benchmark.

Am-utils : we configured and compiled a large package
inside each file system. We used am-utils-6.0.4: it contains
over 50,000 lines of C code in several dozen files. The build
process begins by running several hundred small configura-
tion tests intended to detect system features. It then builds
a shared library, about ten binaries, four scripts, and docu-
mentation. Overall this benchmark contains a large number
of reads, writes, and file lookups, as well as a fair mix of
most other file system operations such as unlink, mkdir, and
symlink. During the linking phase, several large binaries are
linked by GNU ld, which exercises our support for holes (al-
though the final linking phase fills all holes with data). There-
fore this test is a more realistic general benchmark.

This test is the only test that we also ran with a warm
cache. Our system caches decoded and encoded pages when-
ever possible, so as to improve performance. While normal
file system benchmarks are done using a cold cache, we felt
that there is value in also showing what the performance
impact of our caching is. Also, we ran the test with and
without our fast-tails option. We expect that in this general
benchmark, fast tails would not have a large impact since the
benchmark does not have an unusually large number of small
appends.

Figure 5 summarizes the results of the am-utils bench-
mark. Using a warm cache improves performance by 5–10%.
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Figure 5: The Am-utils large compile benchmark. The standard
deviations for this benchmark was less than 3% of the mean.

Using fast-tails improves performance by at most 2%. Inter-
estingly, the fast-tail code has a small overhead of its own,
since it runs different code in our system. For file systems
that do not need fast tails, such as copyfs, fast tails actually
reduces performance by 1%. We determined that fast tails is
an option best used for expensive SCAs where many small
appends are occurring, a conclusion demonstrated more vis-
ibly in Section 4.2. On average, the cost of data copying
without size-changing (wrapfs compared to ext2fs) is an ad-
ditional 2.4%. SCA support (copyfs over wrapfs) adds an-
other 2.3% overhead. The uuencode algorithm is simple,
and adds only 2.2% additional overhead over copyfs. Gzipfs,
however, uses a more expensive algorithm (Deflate)[5], and
it adds 14.7% overhead over copyfs.

Bonnie: this file system benchmark intensely exercises file
data reading and writing, both sequential and random. Bon-
nie is a less general benchmark than am-utils. Bonnie has
three phases. First, it creates a file of a given size by writ-
ing it one character at a time, then one block at a time, and
then it rewrites the same file 1024 bytes at a time. Second,
Bonnie writes the file one character at a time, then a block at
a time; this can be used to exercise the file system cache, as
cached pages have to be invalidated as they get overwritten.
Third, Bonnie forks 3 processes that each perform 4000 ran-
dom lseek()s in the file, and read one block; in 10% of those
seeks, Bonnie also writes the block with random data. This
last phase exercises the file system quite intensively.

For our case, we ran Bonnie using files of increasing sizes,
from 1KB and doubling in size up to 128MB. The last size
is important, because it matches the available memory on the
system. Running Bonnie on a file that large, especially in a
stackable setting where pages are cached in both layers, is
important as the page cache should not be able to hold the
complete file in memory.

Since this benchmark exercises data reading and writing
heavily, we expect it to be affected by the SCA in use. Fig-
ure 6 confirms this. Wrapfs has an average overhead of 20%
over ext2fs. Copyfs only adds an additional 8% overhead
over wrapfs. Uuencodefs adds an overhead over copyfs that
ranges from 5% to 73% for large files. Gzipfs, with its ex-
pensive SCA, adds an overhead over copyfs that ranges from
22% to 418% on the large 128MB test file.
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Figure 6: The Bonnie benchmark performs many repeated reads
and writes on one file, as well as numerous random seeks and writes
in three concurrent processes.

4.2 Micro-Benchmarks

The am-utils benchmark gives us a feel for the overall per-
formance our system has under typical workloads. To a
great extent, the Bonnie benchmark exercised our write-in-
the-middle code, the code that has to handle possible data
shifts. In this section we go a step further and analyze very
specific file system operations that we expect to be affected
by our system. In particular, we are interested in the follow-
ing

� Writing files of various sizes. Writing is often more ex-
pensive that reading, and when writing files we have to
create or modify index files.

� Appending to files. We are interested in the cost of ap-
pending a different number of bytes to various files, and
how effective our fast-tails code is.

� Getting the attributes of files. In particular the size of
the original file is saved in the index file, not in an in-
ode. To get the size of the original file we have to read
in the index table, a potentially expensive data reading
operation.

Writing Files. We copied files of different sizes into a
tested file system, and we tried it with and without our fast
tails support. Figure 7 shows this. Wrapfs adds an aver-
age overhead of 16.4% over ext2fs; this is the overhead of
data page copying. Copyfs adds an overhead of 23.7% over
wrapfs; this is the overhead of updating and writing the in-
dex file as well as having to make temporary data copies (ex-
plained in Section 3) to support writes in the middle of files.
The uuencode algorithm adds an additional average overhead
of 43.2% over copyfs. For all copies over 4KB, fast-tails
makes no difference at all. Below 4KB, it only improves
performance by 1.6% for uuencodefs. The reason for this is
that this benchmark copies files only once, where fast-tails
is intended to work better in situations with multiple small
appends.

Compression algorithms behave differently based on the
input they are given. To evaluate the write performance of
our compression file system, we ran it using four different
data types: a file containing the same character repeatedly,
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Figure 7: Copying files into a tested file system. As expected,
uuencodefs is costlier that copyfs, wrapfs, and ext2fs. Fast-tails
do not make a difference in this test, since we are not appending
multiple times.

a text file, a binary file, and an already-compressed file. We
ran the same tests using GNU zip (gzip)[6, 8], which uses the
same algorithm and compression level (9). Figure 8 shows
these results.
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Figure 8: Comparing file copying into gzipfs (kernel) and using
GNU zip (user-level) for various file types and sizes.

On average, the gzipfs compresses the “a” files 29.6%
faster than GNU zip. For more typical text files and bina-
ries, gzipfs compresses them on average 2.0–2.4 times faster.
The larger the file is, the greater the savings: on files only as
large as a megabyte, gzipfs runs 3.1–4.8 times faster. This
is useful because large text files and binaries are the most
likely candidates for compression, especially if they can be
compressed quickly.

An interesting result we found is that the performance
difference was not too great for compressing the already-
compressed file; gzipfs was only 88% faster. The reason
for this is that the Deflate compression algorithm will stop
looking for potential data patterns to replace if it cannot find
them quickly enough. So for a previously compressed file,
the Deflate algorithm realizes quickly that it cannot compress
it well, and moves on to another area of the file, speeding up
overall compression performance for compressed files. An-
other interesting result to note is that compression is not uni-
form across a given file, even if the file purports to be of a
given type. This is why some of the graphs in Figure 8 are
not very smooth: the compression algorithm had to spend
a different amount of time in those parts of the files being
tested.
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Appending to Files. As we explained in Section 2.2.1,
we encode whole pages, but the last page of a file is often
incomplete. So when such a file is appended to, the incom-
plete but encoded chunk of data must be decoded first, then
the new bytes appended to this decoded chunk, and then the
new and longer sequence has to be re-encoded. This expen-
sive process must continue as long as the decoded number of
bytes are less than 4KB. The more expensive the algorithm,
the worse this process gets; the smaller the number of bytes
appended to, and the more appends there are, the worse per-
formance gets. Fast-tails is our technique for deferring the
need to decode and re-encode until we have collected enough
data. Then we encode a whole 4KB chunk at once, and start
a new fast tail with the remaining bytes.

To evaluate the effectiveness of our fast tails code, we read
in large files of different types, and used their bytes to append
to a newly created file. We created new files by appending to
them a fixed, but growing number of bytes. We appended
bytes in three different sizes: 10 bytes representing a rel-
atively small append, 100 bytes representing a typical size
for a log entry on a Web server or syslog daemon, and 1000
bytes, representing a relatively large append unit. We did not
try to append more than 4KB because that is the boundary
where fast appended bytes get encoded.

Figure 9 shows the two emerging trends in effectiveness of
the fast tails code. First, the more expensive the algorithm,
the more helpful fast tails become. This can be seen in the
right column of plots. Second, the smaller the number of
bytes appended to the file is, the more savings fast tails pro-
vide, because the SCA is called fewer times. This can be
seen as the trend from the bottom plots (1000 byte appends)
to the top plots (10 byte appends). The upper rightmost plot
clearly clusters together the benchmarks performed with fast
tails support on and those benchmarks conducted without fast
tails support.

Not surprisingly, there is very little savings from fast tail
support for copyfs, no matter what the append size is. Uuen-
codefs is a simple algorithm that does not consume too much
CPU cycles. That is why savings for using fast tails in uuen-
codefs range from 22% for 1000-byte appends to a factor of
2.2 performance improvement for 10-byte appends. Gzipfs,
using an expensive SCA, shows significant savings: from a
minimum performance improvement factor of 3 for 1000-
byte appends to as much as a factor of 77 speedup (both for
moderately sized files).

Getting the attributes of files. The size of the original
file is now stored in the index file, not in the inode of the
encoded data file. Finding this size requires reading an addi-
tional inode of the index file, and then reading its data. We
ran a recursive listing (ls –lRF) on a freshly unpacked am-
utils benchmark file set. We report these results in figure 10.
Wrapfs add an overhead of 36% to the getattr operation, be-
cause it has to copy the attributes from one inode data struc-
ture into another. Copyfs adds the most significant overhead,
a factor of 2.7 over wrapfs; that is because copyfs includes
stackable SCA support, managing the index file in memory

and on disk. However, uuencodefs and gzipfs add an over-
head of only 12–26% over copyfs, for the getattr operation.
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Figure 10:Retrieving file attributes (stat)

While the getattr file operation is a popular one, it is still
very fast: the additional inode is likely to be in the locality of
the data file, and the index file is over 1000 times smaller than
the original data file. In addition, most operating systems
cache attributes once they are retrieved. Finally in a typical
workload, bulk data reads and writes are likely to dominate
any other file system operation such as getattr.

4.3 Additional Tests

We measured the time it takes to recover an index file, and
found it to be statistically indifferent from the cost of reading
the whole file. This is expected, because to recover the index
file we have to decode the complete data file.

One additional benchmark of note is the space savings for
our compression file system, gzipfs, compared to the user
level GNU zip tools. The Deflate algorithm used in both
works best when it is given as much input data to work with
at once. GNU zip looks ahead at 64KB of data, while gzipfs
currently limits itself to 4KB (one page). For this reason,
GNU zip achieves on average better compression ratios: as
little as 4% better for compressing previously compressed
data, to a factor of 5.6 for compressing the all-“a” file.

We also compared the performance of uuencodefs to user
level uuencode utilities. We found the performance savings
to be comparable to those with gzipfs compared to GNU zip.

5 Related Work

Most work in the area of stackable or extensible file systems
appeared in the early 1990s[10, 12, 25, 27, 28]. Newer op-
erating systems, such as the HURD[3] and Plan 9[22], have
an extensible file system interface. Some of these works sug-
gested the idea of stackable compression file systems.

Two additional works in Spring[15, 18] and Ficus[11] dis-
cussed a similar idea for implementing a stackable compres-
sion file system. Both suggested a unified cache manager that
can automatically map compressed and uncompressed pages
to each other. Heidemann’s Ficus work provided additional
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Figure 9:Appending to files. The more expensive the SCA is, and the smaller the number of bytes appended is, the more effective fast tails
become, as can be seen on the upper rightmost plot. The standard deviation for this figure did not exceed 9% of the mean.
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details on mapping cached pages of different sizes.1 Unfortu-
nately, no demonstration of these ideas for compression file
systems was available from either of these works. In addi-
tion, no consideration was given to arbitrary size-changing
algorithms, and how to handle difficult file operations effi-
ciently, such as appends, writing in the middle, etc.

In addition, past implementations of stackable file systems
required modifications to either existing file systems or the
rest of the kernel, limiting their portability significantly, and
affecting the performance of native file systems. Although
this paper discusses an implementation on one operating sys-
tem (Linux), we have demonstrated portable stacking twice
before[31, 32], and expect to port our SCA support to other
platforms (Solaris and FreeBSD) in a short time.

Compression file systems are not a new idea. Windows
NT supports compression in NTFS[20]. E2compr is a set
of patches to Linux’s EXT2 file system that add block-level
compression[2]. The benefit of block-level compression is
primarily speed. Their main disadvantage is that they are
specific to an operating system and one file system, making
them very difficult to port to other systems, and resulting in
code that is hard to maintain. Our approach is more portable
because we use existing stacking infrastructure, we do not
change file systems or operating systems, and we run our
code in the kernel to achieve good performance.

The Exokernel[14] is an extensible operating system that
comes with XN, a low-level in-kernel stable storage system.
XN allows users to describe the on-disk data structures and
the methods to access and manipulate them in a structure
called a libFS. libFSes can implement a size-changing al-
gorithm using a language of their own to determine which
blocks in the lower-level file system map to a given file and
the total size of a given file. The Exokernel, however, re-
quires significant porting work to each new platform, but then
it can run many unmodified applications.

Another transparent compression method possible is in
user level. Zlibc is a preloadable shared library that allows
executables to uncompress the data files that they need on
the fly[17]. It is slow because it runs in user level, it only
works on whole files, and it can only decompress files. Fur-
thermore, it has to decompress the whole file before it can be
used. Our system is much more flexible, performs well, can
work with parts of files or whole files, and supports all file
system operations transparently.

GNU zip (gzip))[6, 8] itself maintains some information
on the structure of its compressed data. This information
includes the un-encoded length of the file, the original file
name, and a checksum of the encoded data. The information
is useful, but is insufficient for the needs of a file system.
Gzip, for example, does not provide support for random-
access reading, a requirement for a compressed file system.
With gzip, compressed data must be decompressed sequen-

1Heidemann’s earlier work[13] mentioned a “prototype compression
layer” built during a class project. In personal communications with the
author, we were told that this prototype was implemented as a block-level
compression file system, not a stackable one.

tially from beginning to end.

6 Conclusions

The main contribution of our work is demonstrating that size-
changing algorithms can be used effectively and transpar-
ently with stackable file systems. Our performance over-
head is small and running these algorithms in the kernel im-
proves performance considerably. File systems with support
for size-changing algorithms can offer new services auto-
matically and transparently to applications without having to
change these applications or run them differently. Our tem-
plates provide support for generic size-changing algorithms,
allowing developers to write new file systems easily.

Stackable file systems also offer portability across differ-
ent file systems. File systems built with our SCA support can
work on top of any other file system. In addition, we have
done this work in the context of our FiST language, allow-
ing rapid development of SCA-based file systems on multiple
platforms[32].

6.1 Future Work

Our immediate future work is to add SCA support to our So-
laris and FreeBSD templates. Next we would like to add
support for large files and 64-bit file systems; this would re-
quire storing longer information in the index table, possibly
doubling its size. While the index table is currently small
compared to the original file, it can be larger on a huge file.
For example, on a 64-bit file system, with 64 bit file offsets,
an index file may be as large as 8MB for a 4GB original file.
When we add support for 64 bits, we would also like to page
portions of the index file in and out as needed, instead of
reading it in completely.

An additional important optimization we plan to imple-
ment shortly is to avoid extra copying of data into temporary
buffers. This is only needed when an encoded buffer is writ-
ten in the middle of a file and its encoded length is greater
than its decoded length; in that case, we must shift outward
some data in the encoded data file to make room for the new
encoded data. We can optimize this code and avoid mak-
ing the temporary copies when files are appended to or being
newly created and written sequentially.

We plan to improve support for sparse files, and in partic-
ular to allow holes to be recovered accurately. For that, we
plan to add to the data file a bitmap that encodes which pages
were holes and which were not. This would pose a small
additional space consumption for the data file. For example,
in 128 bytes of data we can encode 1024 pages, indicating
which ones are holes; 1024 pages of data represent a 4MB
file on a system with a 4KB page size. Once we encode in-
formation about holes in the data file, we could recover that
information in the index file as well. In addition, the bitmap
would allow us to report the number of real data blocks in a
file that contains holes.
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Our design allows the unit of encoding at the upper layer
to be any multiple of page size, but our current implementa-
tion makes it one page size. We intend to add that support
so that SCA-based file systems can work on larger units of
data. This can be useful for compression file systems: the
more data they compress at once, the better compression ra-
tios they can achieve.

7 Acknowledgments

We would like to thank Jerry B. Altzman for his initial input
into the design of the index table. We like to thank John
Heidemann for offering clarification regarding his previous
work in the area of stackable filing. This work was partially
made possible by NSF infrastructure grants numbers CDA-
90-24735 and CDA-96-25374.

References

[1] Am-utils (4.4BSD Automounter Utilities). Am-utils ver-
sion 6.0.4 User Manual. February 2000. Available
http://www.cs.columbia.edu/˜ezk/am-utils/.

[2] L. Ayers. E2compr: Transparent File Compression
for Linux. Linux Gazette, Issue 18, June 1997.
http://www.linuxgazette.com/issue18/e2compr.html.

[3] M. I. Bushnell. The HURD: Towards a New Strategy of OS
Design. GNU’s Bulletin. Free Software Foundation, 1994.
http://www.gnu.org/software/hurd/hurd.html.

[4] R. Coker. The Bonnie++ Home Page.
http://www.coker.com.au/bonnie++.

[5] P. Deutsch. Deflate 1.3 Specification. RFC 1051. Network
Working Group, May 1996.

[6] P. Deutsch and J. L. Gailly. Gzip 4.3 Specification. RFC
1052. Network Working Group, May 1996.

[7] P. Deutsch and J. L. Gailly. Zlib 3.3 Specification. RFC 1050.
Network Working Group, May 1996.

[8] J. L. Gailly. GNU zip.
http://www.gnu.org/software/gzip/gzip.html.

[9] J. L. Gailly and M. Adler. The zlib Home Page.
http://www.cdrom.com/pub/infozip/zlib/.

[10] R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page Jr., G. J.
Popek, and D. Rothmeier. Implementation of the Ficus repli-
cated file system.USENIX Conf. Proc., pages 63–71, Summer
1990.

[11] J. Heidemann and G. Popek. Performance of cache coherence
in stackable filing. Fifteenth ACM SOSP. ACM SIGOPS,
1995.

[12] J. S. Heidemann and G. J. Popek. A layered approach to
file system development. Tech-report CSD-910007. UCLA,
1991.

[13] J. S. Heidemann and G. J. Popek. File System Development
with Stackable Layers.ACM ToCS, 12(1):58–89, Feb., 1994.

[14] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Brice˜no,
R. Hunt, D. Mazières, T. Pinckney, R. Grimm, J. Jannotti,
and K. Mackenzie. Application performance and flexibility
on exokernel systems.Sixteenth ACM SOSP, pages 52–65,
1997.

[15] Yousef A. Khalidi and Michael N. Nelson. Extensible file sys-
tems in Spring.Proceedings of Fourteenth ACM Symposium
on Operating Systems Principles, pages 1–14, 1993.

[16] S. R. Kleiman. Vnodes: An Architecture for Multiple File
System Types in Sun UNIX.USENIX Conf. Proc., pages 238–
47, Summer 1986.

[17] A. Knaff. Zlibc: Uncompressing C Library.
ftp://ftp.gnu.org/pub/gnu/zlibc/zlibc-0.9e.tar.gz.

[18] J. G. Mitchell, J. J. Gibbons, G. Hamilton, P. B. Kessler, Y. A.
Khalidi, P. Kougiouris, P. W. Madany, M. N. Nelson, M. L.
Powell, and S. R. Radia. An Overview of the Spring System.
CompCon Conf. Proc., 1994.

[19] L. Mummert and M. Satyanarayanan. Long Term Distributed
File Reference Tracing: Implementation and Experience. Re-
port CMU-CS-94-213. Carnegie Mellon University, Pitts-
burgh, U.S., 1994.

[20] R. Nagar. Filter Drivers. InWindows NT File System Inter-
nals: A developer’s Guide, pages 615–67. O’Reilly, 1997.

[21] John Ousterhout. Why Aren’t Operating Systems Getting
Faster as Fast as Hardware?USENIX Conference Proceed-
ings(Anaheim, CA), pages 247–56. USENIX, Summer 1990.

[22] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan 9
from Bell Labs. Proceedings of Summer UKUUG Confer-
ence, pages 1–9, July 1990.

[23] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison
of File System Workloads. To appear inUSENIX Conf. Proc.,
June 2000.

[24] D. S. H. Rosenthal. Requirements for a “Stacking”
Vnode/VFS Interface. UI document SD-01-02-N014. UNIX
International, 1992.

[25] D. S. H. Rosenthal. Evolving the Vnode Interface.USENIX
Conf. Proc., pages 107–18. USENIX, Summer 1990.

[26] B. Schneier. Algorithm Types and Modes. InApplied Cryp-
tography, 2nd ed., pages 189–97. John Wiley & Sons, 1996.

[27] G. C. Skinner and T. K. Wong. ”Stacking” Vnodes: A
Progress Report.USENIX Conf. Proc., pages 161–74, Sum-
mer 1993.

[28] N. Webber. Operating System Support for Portable Filesys-
tem Extensions.USENIX Conf. Proc., pages 219–25, Winter
1993.

[29] E. Zadok and I. Badulescu. A Stackable File System Interface
for Linux. LinuxExpo Conf. Proc., 1999.

[30] E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A Stack-
able Vnode Level Encryption File System. Technical Report
CUCS-021-98. Computer Science Department, Columbia
University, 1998.

[31] E. Zadok, I. Badulescu, and A. Shender. Extending File Sys-
tems Using Stackable Templates.USENIX Conf. Proc., 1999.

[32] E. Zadok and J. Nieh. FiST: A Language for Stackable File
Systems. To appear inUSENIX Conf. Proc., June 2000.

Software, documentation, and additional papers are available
from http://www.cs.columbia.edu/˜ezk/research/fist/.

14


