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Abstract

Long-running server applications can easily execute
millions of common data-intensive system calls each
day, incurring large data copy overheads. We introduce a
new framework, Compound System Calls (Cosy), to en-
hance the performance of such applications. Cosy pro-
vides a mechanism to safely execute data-intensive code
segments in the kernel. Cosy encodes a C code segment
containing system calls in a compound structure. The
kernel executes this aggregate compound directly, thus
avoiding data copies between user-space and kernel-
space. With the help of a Cosy-GCC compiler, regular
C code can use Cosy facilities with minimal changes.
Cosy-GCC automatically identifies and encodes zero-
copy opportunities across system calls. To ensure safety
in the kernel, we use a combination of static and dy-
namic checks, and we also exploit kernel preemption
and hardware features such as x86 segmentation. We im-
plemented the system on Linux and instrumented a few
data-intensive applications such as those with database
access patterns. Our benchmarks show performance im-
provements of 20–80% for non-I/O bound applications.

1 Introduction

Applications like FTP, HTTP, and Mail servers move a
lot of data across the user-kernel boundary. It is well un-
derstood that this cross-boundary data movement puts
a significant overhead on the application, hampering
its performance. For data-intensive applications, data
copies to user-level processes could slow overall perfor-
mance by two orders of magnitude [33]. For example,
to serve an average Web page that includes five exter-
nal links (for instance images), a Web server executes
12 read and write system calls. Thus a busy Web server
serving 1000 hits per second will have executed more
than one billion costly data-intensive system calls each
day.

One method to address the problem of data movement
is to extend the functionality of existing OSs to satisfy
the needs of the application [2, 9, 22, 28]. The problem
with such methods is that they require an entirely new

framework with a special OS or special languages to as-
sure the safety of the system. Another way to reduce
data copies is simply to minimize the number of times
context switches happen. For example, reading files in
large chunks instead of small ones can reduce the num-
ber of times the read system call is invoked to read a
file entirely. A third method, often used in networking,
is to aggregate network or protocol messages together
and send them as one larger message. NFSv4 [24] de-
fines a compound message as a packed sequence of RPC
messages, each specifying a single NFSv4 operation. In
this way, an NFSv4 client could send a distant server
one message that encodes several requests, thus reduc-
ing network latency and setup time.

Cosy provides a framework that allows user applica-
tions to execute their data-intensive code segments in
the kernel, thereby avoiding data copies. Cosy aggre-
gates the system calls and intermediate code belonging
to a data-intensive code segment to form a compound.
This compound is passed to the kernel via a new system
call (cosy run), which decodes the compound and ex-
ecutes the encoded operations, avoiding data copies.

Zero-copy techniques, sometimes known as fast-path
architectures, reduce the number of times data is copied
[1, 12, 13, 16]. Cosy employs zero-copy techniques in
three places. First, the Cosy buffer used to encode a
compound is itself a physical kernel memory segment
mapped to the user space application; this way both the
kernel and the user process can read from or write to this
shared memory space without an explicit copy. Second,
the Cosy system allows a user application to allocate ad-
ditional contiguous physical kernel memory that is also
mapped to the user application. This memory, called
a Cosy shared data buffer, can be used like any other
malloced memory, only that using this memory does
not require copying between user processes and the ker-
nel; this is particularly useful for system calls that run
frequently (e.g., stat) or copy a lot of data between the
user and kernel address spaces (e.g., read or write).
Third, Cosy allows compounded system calls to directly
share system call arguments and return values. For ex-
ample, the file descriptor number returned by open can
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be passed to a read call so it can operate on that opened
file; and a memory buffer (whether a Cosy shared buffer
or not) used by a read call could be passed to a subse-
quent write call, which can then use it directly.

We provide Cosy-GCC, a modified version of GCC
3.2, to automatically convert data-intensive code into
a compound. The user just needs to mark the data-
intensive code segment and Cosy-GCC converts the
code into a compound at compile time. Cosy-GCC also
resolves dependencies among parameters of Cosy state-
ments and encodes this information in the compound.
Cosy uses this information to reduce data copies while
executing the compound in the kernel.

Systems that allow arbitrary user code to execute in
kernel mode must address security and protection issues:
how to avoid buggy or malicious code from corrupting
data, accessing protected data, or crashing the kernel.
Securing such code often requires costly runtime check-
ing [28]. Cosy uses a combination of static and run-
time approaches to assure safety in the kernel. Cosy
explores various hardware features along with software
techniques to achieve maximum safety without adding
much overhead.

We have prototyped the Cosy system on Linux. We
conducted a series of general-purpose benchmarks and
micro-benchmarks comparing regular user applications
to those that use Cosy. We found overall performance
improvements of Cosy to be up to 20–80% for common
non-I/O bound user applications.

The rest of this paper is organized as follows. Section
2 describes the design of our system and includes safety
features in detail. We discuss interesting implementation
aspects in Section 3. Section 4 describes the evaluation
of our system. We review related works in Section 5 and
conclude in Section 6.

2 Design
Often only a critical portion of the application code suf-
fers due to data movement across the user-kernel bound-
ary. Cosy encodes the statements belonging to a bottle-
neck code segment along with their parameters to form
a compound. When executed, this compound is passed
to the kernel, which extracts the encoded statements and
their arguments and executes them one by one, avoiding
extraneous data copies. We designed Cosy to achieve
maximum performance with minimal user intervention
and without compromising security. The three primary
design objectives of Cosy are as follows:

Performance We exploit several zero-copy techniques
at various stages to enhance the performance. For
example, we use shared buffers between user and
kernel space for fast cross-boundary data exchange.

Safety We use various security features involving ker-
nel preemption and hardware-specific features such

as Intel’s segmentation, to assure a robust safety
mechanism even in the face of errant or malicious
user programs. We use a combination of static and
dynamic checks to assure safety in the kernel with-
out adding much runtime overhead. We discuss
safety design issues in Section 2.6.

Simplicity We have automated the formation and exe-
cution of the compound so that it is almost transpar-
ent to the end user. Thus, it is simple to write new
code as well as modify existing code to use Cosy.
The Cosy framework is extensible and adding new
features to it is easy.

2.1 Architecture
To facilitate the formation and execution of a compound,
Cosy provides three components: Cosy-GCC, Cosy-Lib
and the Cosy Kernel Extension. Users need to identify
the bottleneck code segments and mark them with the
Cosy specific constructs COSY START and COSY END.
This marked code is parsed and the statements within
the delimiters are encoded into the Cosy language. We
call this intermediate representation of the marked code
segment a compound. Encoded statements belonging to
a compound are called Cosy operations.

The Cosy system uses two buffers for exchanging in-
formation. First, a compound is encoded in a compound
buffer. Second, Cosy uses a shared buffer to facilitate
zero-copying of data within system calls and between
user applications and the kernel.

2.2 Cosy-GCC
Cosy-GCC automates the tedious task of extracting
Cosy operations out of a marked C-code segment and
packing them into a compound, so the translation of
marked C-code to an intermediate representation is en-
tirely transparent to the user.

Cosy-GCC also resolves dependencies among param-
eters of the Cosy operations. Cosy-GCC determines if
the input parameter of the operations is the output of any
of the previous operations. It is necessary to encode this
dependency, as the real values of the parameters are not
known until the operations are actually executed. While
parsing the marked code, Cosy-GCC maintains a symbol
table of output parameters of the operations and labels.
It compares each of the input parameters of any new op-
eration against the entries in the symbol table to check
for any dependencies. This dependence is marked in the
flags field (Section 2.3.1) of the compound buffer. For
conditional statements or jumps, the control flow within
the compound may vary depending on the outcome of
the conditional statement. Cosy-GCC determines the
next operation to execute in case that a branch is taken or
not taken. To resolve forward references in such cases,
Cosy-GCC uses a symbol table.
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Cosy supports loops (i.e., for, do-while, and
while), conditional statements (i.e., if, switch,
goto), simple arithmetic operations (i.e., increment,
decrement, assignment, add, subtract) and system calls
within a marked code segment. Cosy also provides an
interface to execute a piece of user code in the ker-
nel. Applications like grep, volume rendering [31], and
checksumming are the main motivation behind adding
this support. These applications read large amounts of
data in chunks and then perform a unique operation on
every chunk. To benefit such applications Cosy provides
a secure mechanism to call a user supplied function from
within the kernel.

In order to assure completely secure execution of the
code in the kernel, we restrict Cosy-GCC to support a
subset of the C-language. Cosy-GCC ensures there are
no unsupported instructions within the marked block, so
complex code may need some small modifications to
fit within the Cosy framework. This subset is carefully
chosen to support different types of code in the marked
block, thus making Cosy useful for a wide range of ap-
plications.

2.3 Cosy-Lib

The Cosy library provides utility functions to create a
compound. Statements in the user-marked code segment
are changed by the Cosy-GCC to call these utility func-
tions. So the functioning of Cosy-Lib and the internal
structure of the compound buffer are entirely transpar-
ent to the user.

Cosy-Lib is also responsible for maintaining the
shared data buffer. The library extends the malloc library
to efficiently handle the shared data buffer. User applica-
tions that wish to exploit zero-copy can manage memory
from the shared data buffer with the cosy malloc and
cosy free functions provided by our library.

2.3.1 Structure of a Compound

In this section we describe the internal structure of a
compound, which is stored within the compound buffer
(see Figure 1). A compound is the intermediate repre-
sentation of the marked code segment and contains a set
of operations belonging to one of the following types:

� System calls
� Arithmetic operations
� Variable assignments
� while and do-while loops
� Optimized for loops (See Section 3)
� User provided functions
� Conditional statements
� switch statements
� Labels
� gotos (unconditional branches)
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Figure 1: Internal structure of cosy compound: An example
of a compound of a system call, a conditional, an assignment,
and an addition.

The compound buffer is shared between the user and
kernel space. The operations that are added by the user
into the compound are directly available to the Cosy Ker-
nel Extension without any data copies. The first field of
a compound is the global header that contains the total
number of operations encoded in the compound. The
“End of Compound” field is required since each Cosy
operation may occupy a variable length. The compound
also contains a field to set the upper limit on the maxi-
mum number of operations to be executed. This limit is
necessary to avoid infinite loops inside the kernel. The
remaining portion of the compound contains a number
of operations. The structure of each operation is of the
following form: a local header followed by a number of
arguments needed for the execution.

Each type of operation has a different structure for the
local headers. Each local header has a type field, which
uniquely identifies the operation type. Depending on the
type of the operation, the rest of the arguments are ana-
lyzed. For example, if the operation is of the type “sys-
tem call,” then the local header will contain the system
call number and flags. The flags indicate whether the ar-
gument is the actual value or a reference to the output
of some other operation. The latter occurs when there
are argument dependencies. If it is a reference, then the
actual value is retrieved from the reference address. The
local header is followed by a number of arguments nec-
essary to execute the operation. If the execution of the
operation returns any value (e.g., a system call, math op-
eration, or a function call) one position is reserved to
store the result of the operation. Conditional statements
affect the flow of the execution. The header of a con-
ditional statement specifies the operator, and if the con-
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dition is satisfied, the next instruction is then executed.
Cosy-GCC resolves dependencies among the arguments
and the return values, the correspondence between the
label and the compound operation, and forward refer-
ences for jump labels.

2.4 The Cosy Kernel Extension
The Cosy kernel extension extracts the operations en-
coded in a compound and executes them one by one.
The Cosy kernel extension provides three system calls:

� cosy init allocates both the compound buffer
and the shared data buffer that will be used by
the user and the kernel to exchange encoded com-
pounds and return results.

� cosy run decodes the compound and executes
the decoded operations one by one.

� cosy free releases any resources allocated for
Cosy on behalf of this process. This is optional:
the kernel will also garbage collect such resources
upon termination of the process.

2.4.1 Executing the Compound
The Cosy kernel extension is the heart of the Cosy
framework. It decodes each operation within a com-
pound buffer and then executes each operation in turn.

The normal behavior of any user application is to
make system calls, and based on the results, decide the
next set of system calls to execute; so the sequence
in which the system calls are executed is not constant.
Therefore, it is not sufficient to execute the system calls
belonging to a compound in the order that they were
packed. After executing one system call, the Cosy ker-
nel extension checks the result and decides the next sys-
tem call to execute. The Cosy framework supports pro-
gramming language constructs such as loops, condition-
als, and math operations. This way the user program
can encode conditional statements and iterative instruc-
tions into the compound. The Cosy kernel extension ex-
ecutes the system calls in the sequence that they were
packed unless it reaches a condition or loop statement.
At that point, it determines the next call to execute de-
pending on the result of the conditional statement. Cosy
also supports another mode, where the Cosy kernel ex-
tension exits on the first failure of any Cosy operation.
This mode is useful while executing a long loop in the
kernel that has error checking after the loop.

We limit the framework to support only a subset of C.
One of the main reasons is safety, which we discuss in
Section 2.6. Another issue is that extending the language
further to support more features may not increase per-
formance because the overhead to decode a compound
increases with the complexity of the language. The sav-
ings may not be manifested as a result of this overhead.

Efficient decoding of the compound is required to

achieve our performance goals. To achieve this, we
exploit various optimizations. To make decoding effi-
cient, Cosy uses lazy caching of decoded data. Thus the
first time any operation is visited it is decoded and this
decoded operation is stored in a hash table. The next
time the same operation has to be evaluated, decoding
is avoided. During system call execution, the arguments
of the system calls are pushed directly onto the stack
and then the system call function is called using a small
amount of assembly code. This avoids any intermediate
copying of arguments from the compound buffer to lo-
cal buffers and hence speeds up the invocation of system
calls. The savings in the decoding time and the time to
invoke a system call help to minimize Cosy’s overhead.

2.5 Zero-Copy Techniques
Many common system calls can realize performance im-
provements through zero-copy techniques. read and
write are especially good candidates as they normally
copy large amounts of data between the kernel and user
space. Calls like stat can also benefit from zero-copy
techniques because they are invoked very often.

The area where user programs can achieve the largest
savings from the shared data buffer is system time.
So this method is particularly useful when the data
copies are not I/O bound. The Cosy framework uses
the shared data buffer to support zero-copy data trans-
fers by modifying the behavior of copy to user and
copy from user. Many system calls including read
and write utilize these copy calls and will enjoy the
benefits of using the shared data buffer by avoiding re-
dundant data copies.

Whenever a user makes a read system call using
the shared buffer, Cosy checks for the use of a shared
buffer and skips the copy to user call avoiding a
data copy back to user-space. Cosy stores the phys-
ical address of the page that contains the read data in
struct task. After that, if the user makes any call
that uses the same shared buffer, then the stored phys-
ical address is provided to that call. For example, if
the user makes a write call which also uses the same
shared buffer, Cosy uses the stored physical address in
copy from user.

As the check for zero-copy is performed in
copy to user and copy from user, which are
generic calls, any system call that performs data copies
receives the benefit of zero-copy by using the shared
buffer. Cosy is not skipping any validation checks, so
safety is not violated. So in the worst case a bad ad-
dress provided by a buggy or malicious program will be
passed to the system call. The system call still checks the
validity of all arguments, so a segmentation fault will be
generated as normal.

System calls like stat copy information about a file
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from kernel kernel to user space. In this case Cosy saves
copies by allocating the stat buffer in physical ker-
nel memory that is shared between the kernel and the
user process. Cosy can take this one step further and
exploit the relationships between system calls that share
data buffers. For instance, data is often read from one
file and written to another. If we allocate this buffer in
physical kernel memory, then we can share it directly
between calls within the kernel.

Cosy supports special versions of existing system
calls to enable zero-copy by default using the shared data
buffer. These system calls are accessible only through
Cosy. Currently we support stat, read, and write
as described in Section 3. When applications use mem-
ory allocated using cosy malloc and use it in read,
write, or stat system calls, Cosy-GCC detects the
possible optimization and converts these calls to their
zero-copy versions.

2.6 Safety Features
Cosy applies runtime bound checking to prevent possi-
ble overruns of the shared buffer. Cosy is not vulnerable
to bad arguments when executing system calls on be-
half of a user process. The system call invocation by the
Cosy kernel module is the same as a normal process and
hence all the necessary checks are performed. However,
when executing a user-supplied function, more safety
precautions are needed. Cosy makes use of the hard-
ware and software checks provided by the underlying
architecture and the operating system to do this effi-
ciently. We describe two interesting Cosy safety features
in the next sections: a preemptive kernel to avoid infinite
loops, and x86 segmentation to protect kernel memory.

2.6.1 Kernel Preemption
One of the critical problems that needs to be handled
while executing a user function in the kernel is to limit
its execution time. To handle such situations, Cosy
uses a preemptible kernel. A preemptible kernel allows
scheduling of processes even when they are running in
the context of the kernel. So even if a Cosy process
causes an infinite loop it is eventually scheduled out. Ev-
ery time a Cosy process is scheduled out, Cosy interrupts
and checks the running time of the process inside the
kernel. If this time has exceeded the maximum allowed
kernel time then the process is terminated. We modified
the scheduler behavior to add this check for Cosy pro-
cesses. The added code is minimal and is executed only
for Cosy processes and hence does not affect the overall
system performance.

2.6.2 x86 Segmentation
To assure the secure execution of user supplied functions
in the kernel, we use the Intel x86 segmentation feature.

We support two approaches.

The first approach is to put the entire user function
in an isolated segment but at the same privilege level.
The static and dynamic needs of such a function are
satisfied using memory belonging to the same isolated
segment. This approach assures maximum security, as
any reference outside the isolated segment generates a
protection fault. Also, if we use two non-overlapping
segments for function code and function data, concerns
due to self modifying code vanish automatically. How-
ever, to invoke a function in a different segment involves
overhead. Before making the function call, the Cosy
kernel extension saves the current state to resume exe-
cution. Saving the current state and restoring it back is
achieved by using the standard task-switching macros,
SAVE ALL and RESTORE ALL, with some modifica-
tions. These macros involve around 12 assembly pushl
and popl instructions, each. So if the function is small
and it is executed a large number of times, this approach
could be costly due to the added overhead of these two
macros. The important assumption here is that even if
the code is executing in a different segment it still exe-
cutes at the same privilege level as the kernel. Hence,
it is possible to access resources exposed to this isolated
segment, without any extra overhead. Currently, we al-
low the isolated code to read only the shared buffer, so
that the isolated code can work on this data without any
explicit data copies.

The second approach uses a combination of static and
dynamic methods to assure security. In this approach we
restrict our checks to only those that protect against ma-
licious memory references. This is achieved by isolating
the function data from the function code by placing the
function data in its own segment, while leaving the func-
tion code in the same segment as the kernel. In Linux,
all the data references are resolved using ds segment
register, unless a different segment register is explicitly
specified. In this approach, all accesses to function data
are forced to use a different segment register than ds
(gs or fs). The segment register (gs or fs) points to
the isolated data segment, thus allowing access only to
that segment; the remaining portion of the memory is
protected from malicious access. This is enforced by
having Cosy-GCC append a %gs (or %fs) prefix to all
memory references within the function. This approach
involves no additional runtime overhead while calling
such a function, making it very efficient. However, this
approach has two limitations. It provides little protection
against self modifying code, and it is also vulnerable to
hand-crafted user functions that are not compiled using
Cosy-GCC.
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2.7 Cosy Examples
To understand the phases of Cosy in greater detail we
demonstrate a simple C program that reads a file using
Cosy features, and then show its internal representation
after the Cosy-GCC modification.

The C code below reads an input file name until the
end of the file. For simplicity we do not include any
error checking in this example:

1 COSY START;
2 fd = open(name,f,m);
3 do

�
4 rln = read(fd,bf,ln);
5 � while(rln == ln);
6 close(fd);
7 COSY END;

The code segment is marked with COSY START and
COSY END. When this program is compiled using Cosy-
GCC it replaces the statements with calls to Cosy-Lib
functions to add the statements into a compound. We
show the converted code after the Cosy-GCC compila-
tion below:

1 cosy_add(&fd,NR_open,0,name,0,f,0,m);
2 cosy_do();
3 cosy_add(&rln,NR_read,1,fd,0,bf,0,ln);
4 cosy_while(1,rln,"==",0,ln);
5 cosy_add(__NR_close,1,fd);
6 cosy_run();

Statements 1 through 5 add operations to the com-
pound. Statement 6 is a Cosy Kernel Extension call that
informs the Cosy kernel to execute the compound. In
statement 3, the third parameter is a flag indicating that
the parameter value fd is not known and should be re-
trieved from the output of the first operation (open).

3 Implementation
We implemented a Cosy prototype on Linux 2.4.20. This
section highlights the following five implementation is-
sues: kernel changes, shared buffers, zero-copy, faster
system call invocation, and loop constructs.

Kernel Changes and Maintenance The number of
lines of code that we have changed is a good indica-
tor of the complexity of our system. The kernel proper
only needs a 37 line patch, which is only necessary so
that the Cosy kernel module can interface with the static
kernel to modify the task structure. Our system con-
sists of three components: Cosy-GCC, a user-level li-
brary, and a kernel module. The patch to GCC is 600
lines, the kernel code is 1877 lines, and the library is
4002 lines. Most of the kernel code handles the decod-
ing of the compound call. To make it easier for the user
to write programs using Cosy we provide an interface
that for a subset of C. To support this feature we cre-
ated a small database containing the list of all the system
calls. We auto-generate the code to support these system

calls. This auto-generation makes code development and
maintenance simpler.

The changes to the task structure involve addition of
three fields. Since Cosy allocates kernel buffers for each
process. Since kernel buffers are a scarce resource, it is
the responsibility of the allocator to release this memory
after the process’s termination. To facilitate this resource
reclamation we added a field into the task structure that
points to a structure containing all the kernel allocated
addresses, and a field that contains a pointer to a cleanup
function that will release these resources. The third field
contains a timer that indicates the total amount of time
that this Cosy compound has been executing in the ker-
nel. This timer is used to terminate the process when the
process exceeds its allowed time span.

Shared Buffers There are some standard mechanisms
that enable sharing of data between user and kernel
space. We explored two such approaches in great de-
tail to determine which one gives us the fastest way of
sharing data. The first approach was by using kiobufs.
Kiobufs facilitate user-mode DMA. A user application
allocates a buffer in user space and passes the virtual ad-
dress to the kernel. The kernel determines the physical
address of the page and stores it in the kiobufs. When-
ever the kernel wishes to access this data it can just look
into the kiobuf for the physical address of the page.
The limitation of this approach is that multiple pages
may not be allocated contiguously in the physical ad-
dress space. To compensate for this, the kernel needs
to check which page is under consideration and deter-
mine its physical address. This would decrease perfor-
mance for large memory segments. Instead, we chose to
have the kernel kmalloc a set of pages in the memory
and map these pages to the process’ address space. As
kmalloc always returns physically contiguous mem-
ory, both the user and the kernel can access our shared
buffers sequentially.

Zero-Copy Supporting zero-copy without major ker-
nel changes was the biggest challenge we faced. We
explored different options to do a zero-copy read and
write operation. It is possible to modify the read
and write system calls to make them support zero-
copy. We can also implement different versions of these
calls which support the zero-copy data transfer. Both
of the above mentioned solutions are specific to par-
ticular calls. We adopted a more generic approach to
implement zero-copy transfer. Both read and write
and their variants that deal with data copy make use
of the macros copy to user and copy from user.
To provide a generic solution, we modified these two
macros. In copy to user we avoid the data copy
and instead save the source page address belonging to
the disk block. When the read data is to be writ-
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ten, sys write calls copy from user to copy the
data from the user buffer. At this point the address
copy to user stored in the task structure is fed to the
write as the source for data.
stat requires different techniques than read and

write because it returns only a 64 byte structure and the
mapping techniques we use for copy to user are less
efficient with for segments of memory. Cosy defines
cosy stat, which is a special version of sys stat
that operates only on shared buffers. sys stat reads
some information about a requested file into a kernel
buffer and then copies it to a supplied user buffer. Un-
like sys stat, Cosy stat writes directly into the user-
supplied fast buffer, which is accessible to the user ap-
plication. Thus Cosy stat avoids one data copy of the
stat buffer. The user can allocate a chunk in the fast
buffer by calling cosy malloc, which is then used by
cosy stat to execute a zero-copy stat.

Faster System Call Invocation We use assembly
code to speedup the invocation of system calls. The sys-
tem call arguments are aligned in the shared buffer, in
exactly the same order as they have to be pushed onto
the kernel stack. We push them directly onto the stack
using the IA32 assembly instruction pushl param and
then call the function belonging to the system call using
another assembly instruction call sys call ptr. This
way the argument handling is more efficient. Copying of
arguments into any of the local buffers is avoided. There
are only 25 lines of assembly code consisting of only
simple arithmetic, push, and jump instructions.

Loop Constructs Cosy has three forms of loops:
while, do-while, and for. In the most general case
a for loop is converted to an equivalent while loop,
but many for loops are of the form:

for (i = I; i conditional C; i += N)

In this case converting the for loop to a while loop
will require three Cosy operations: the initialization (i
= � ), the loop (while (i conditional � )), and the addi-
tion (i += � ). However, if the loop is in this common
form, we use a special for operator, which encodes the
parameters � , � , and � into a single operation. Using a
single Cosy operation avoids decoding the addition op-
eration during each loop iteration.

4 Evaluation
To evaluate the behavior and performance of compound
system calls we conducted extensive benchmarking on
Linux comparing the standard system call interface to
various configurations using Cosy. In this section we (1)
discuss the benchmarks we performed using these con-
figurations, (2) demonstrate the overhead added by the

Cosy framework using micro-benchmarks, and (3) show
the overall performance on general-purpose workloads.

4.1 Experimental Setup
We ran each benchmark using a subset of the following
three configurations:

1. VAN: A vanilla setup where benchmarks use stan-
dard system calls, without Cosy.

2. COSY: A modified setup where benchmarks use the
Cosy interface to form compounds and send them
to the kernel to be executed.

3. COSY-FAST: A setup identical to the COSY setup
except that it uses a fast shared buffer to avoid
memory copies between user-space and kernel-
space.

Our experimental testbed was a 1.7GHz Intel Pentium
4 machine with 128MB of RAM and a 36GB 10,000
RPM IBM Ultrastar 73LZX SCSI hard drive. All tests
were performed on an Ext2 file system, with a single
native disk partition that was the size of our largest data
set to avoid interactions with rotational delay [8].

We installed the vanilla Linux 2.4.20 kernel and ap-
plied the Cosy kernel patch and the kernel preemption
patch. All user activities, periodic jobs, and unnecessary
services were disabled during benchmarking. We mea-
sured Cosy performance for a variety of CPU speeds.
However, we only report the results for the 1.7GHz Pen-
tium 4 because the results are not significantly different
for the other CPU speeds.

We ran each experiment at least 20 times and mea-
sured the average elapsed, system, user, and I/O (wait)
times. Finally, we measured the standard deviations in
our experiments and found them to be small: less than
5% of the mean for most benchmarks described. We
report deviations that exceeded 5% with their relevant
benchmarks.

4.2 Cosy Overhead
Using the configurations mentioned in Section 4.1 we
performed a getpid micro-benchmark to evaluate the
efficiency and overhead of the Cosy framework. This
benchmark shows the overhead involved with forming
a compound and executing it using the Cosy frame-
work. We chose getpid because it performs a minimal
amount of work in the kernel.

We ran this benchmark for the VAN and COSY setups.
We omitted the COSY FAST configuration because the
fast buffer does not serve a purpose for getpid.

The VAN benchmark program executes a number of
independent getpid system calls within a for loop.
The COSY setup constructs a for loop to be decoded
by cosy run and evaluated in the kernel. For each test
we ran the benchmark for an exponentially increasing
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number of getpid calls: 2, 4, 8, ..., 256. This helped
us measure the scalability of the Cosy framework.

Figure 2 shows that COSY is more efficient than VAN.
The improvements range from 12–90% in elapsed time,
36–85% in system time, and -10–100% in the user time.

When the number of getpids is 2 or less COSY

shows 10% penalty in user time. This is because COSY

has an overhead of creating the compound in user space.
COSY adds two operations in the compound: a for
loop and a system call getpid. Even if the number
of getpids is increased, the size of the compound re-
mains the same and hence the user-space overhead re-
mains the same. On the other hand, as the number of
getpids increases, the amount of work VAN does in
user space increases linearly. Hence, initially when the
number of getpids is small (less than 3), VAN looks
better in user time; but, as the number of getpids in-
creases, COSY performs better than VAN.

COSY shows improvement in system time, even
though it is decoding and executing a loop inside the ker-
nel. This is because the loop overhead is less costly than
context switching. The benchmark indicates that even
after paying the overhead of decoding a loop, COSY per-
forms 36–85% better than VAN. The results indicate that
the decoding overhead in Cosy is minimal.

Elapsed time results always show improvement, irre-
spective of the number of getpids. Thus, even if COSY

has some overhead for small compounds in user time,
the system time savings more than compensate, result-
ing in overall performance improvement.

4.3 General Purpose Benchmarks
Using the configurations defined in Section 4.1 we con-
ducted four general purpose benchmarks to measure the
overall performance of the Cosy framework for general-
purpose workloads: database, Bonnie, ls, and grep.

Database Simulation In this benchmark we find the
benefits of Cosy for a database-like application. We
wrote a program that seeks to random locations in a file
and then reads and writes to it. The total number of reads
and writes is six million. We followed similar techniques
as used by Bonnie [7] and pgmeter [4] to simulate the
database access patterns. The ratio of reads to writes we
chose is 2:1, matching pgmeter’s database workload.

We used the three configurations VAN, COSY, and
COSY FAST. The Cosy versions of the benchmark pro-
gram create a compound and executes it for a user-
specified number of iterations. This compound executes
a function to generate a random number, for use as an
offset into the file. The next operation in the compound
is to seek to this random offset, and then read from that
location. On every alternate iteration, the compound ex-
ecutes a write after the read. COSY FAST exploits zero-
copy while reading and writing the same data, while

COSY is the non-zero-copy version of the same bench-
mark.

We ran the benchmark for increasing file sizes. We
kept the number of transactions constant at six million.
We also ran this benchmark with multiple processes to
determine the scalability of Cosy in a multiprocess envi-
ronment.

Bonnie We used the Bonnie benchmark [7] to measure
the benefits of Cosy’s zero-copy techniques. Bonnie is
a file system test that intensely exercises both sequential
and random reads and writes. Bonnie has three phases.
First, it creates a file of a given size by writing it one
character at a time, then it rewrites the file in chunks
of 4096, and then it writes the same file one block at a
time. Second, Bonnie reads the file one character at a
time, then a block at a time; this can be used to exercise
the file system cache, since cached pages have to be in-
validated as they get overwritten. Third, Bonnie forks 3
processes that each perform 4000 randomlseeks in the
file, and read one block; in 10% of those seeks, Bonnie
also writes the block with random data. This last phase
of Bonnie simulates a random read+write behavior, of-
ten observed in database applications.

We modified Bonnie to use Cosy. In the first phase
we modified the block write and rewrite sections. We
skip the first section where Bonnie writes to a file using
putc since it is a glibc function that uses buffered I/O
and hence not applicable to Cosy. In the second phase
we modified the block read section. We did not mod-
ify the third phase as we have demonstrated a database
simulation application in the previous benchmark, and
ours is more intense than Bonnie’s. Our database bench-
mark simulates the database read+write patterns more
accurately, because the number of write operations per-
formed by Bonnie are less than that generally observed
in database workloads [4]. Our database benchmark also
runs for 30 seconds doing six million read+write trans-
actions. The third phase of Bonnie executes just 4000
transactions, which takes less than one second.

For the first Bonnie phase we used two configurations,
VAN and COSY FAST, where we compare fastread
and rewrite performance. COSY FAST is useful in the
first phase as both fastread and rewrite exploit
the zero-copy techniques. When performing block data
writes in the second phase it is not possible to save any
data copies. This is why we use VAN and COSY for the
second phase. We ran the benchmarks for exponentially
increasing file sizes from 4–512MB.

ls Listing directory contents can be enhanced by the
Cosy framework. Here we benchmarked our own Cosy
ls program and compared it to a standard ls program.
We ran this program with the -l option in order to force
ls to make a stat system call for each file listed.
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Figure 2: Elapsed, system, and user time percentage improvements of COSY over VAN for getpid.

We used all three configurations defined in Section 4.1:
VAN, COSY, and COSY FAST.

The Cosy versions of the ls benchmark program cre-
ates a compound that performs getdents and uses
its results to determine the entries to be stated. This
compound is then sent to the kernel for execution. The
COSY FAST benchmark uses a special cosy stat sys-
tem call, which is a zero-copy version of the generic
stat system call (automatically selected by Cosy-
GCC). We performed this benchmark to show the effec-
tiveness of new Cosy system calls. We benchmarked ls
with cold cache to test the performance of the special
Cosy systems calls under a worst-case scenario.

For each configuration we ran this benchmark for
5000 and 50000 files and recorded the elapsed, system,
and user times. We unmounted and remounted the file
system between each test to ensure cold cache.

grep grep is another common user application that
can benefit from Cosy. grep represents the class of
applications that read a lot of data and work on that
data without modifying it. In this regard, it is similar to
checksumming or volume rendering applications [31].

We used three configurations VAN, COSY, and
COSY FAST to analyze the performance of grep. The
Cosy versions of the grep benchmark create a com-
pound that opens a specified file, reads each 4096 byte
chunk, executes a user-supplied function that searches
the chunk for a particular string, and repeats this pro-
cess until an end-of-file is reached. This process is re-
peated for a specified number of files using a for loop.
The difference between the two versions of these Cosy
benchmarks is that COSY copies the chunk back to the
user-space, while COSY FAST works on the kernel buffer
avoiding the copy back to user space.

We ran this benchmark for an increasing number of
8K files; however, we plot the graphs against the total
size of data read. The total size of data varies from 128K

to 2MB. We chose a file size of 8K as it is observed that
most accessed files are small [20].

4.4 General Purpose Benchmarks Results

Database Simulation Both versions of Cosy perform
better than VAN. COSY FAST shows a 64% improve-
ment, while COSY shows a 26% improvement in the
elapsed time as seen in Figure 3. COSY FAST is better
than COSY by 38%. This additional benefit is the result
of the zero-copy savings. The improvements achieved
are stable even when the working data set size exceeds
system memory bounds, since the I/O is interspersed
with function calls.

Figure 4 shows the absolute elapsed and system times
for the database benchmark. We show absolute times to
understand the extent of saving achieved by the applica-
tion. COSY FAST is 20 seconds faster than VAN and 12
seconds faster than COSY. In the user time both versions
of Cosy perform better than VAN, saving over 6 seconds.
We do not report the I/O (wait) time for this test, be-
cause the I/O is interspersed with CPU usage, and hence
insignificant (less than 1%).

We also tested the scalability of Cosy, when multiple
processes are modifying a file concurrently. We repeated
the database test for 2 and 4 processes. We kept the total
number of transactions performed by all processes to-
gether fixed at six million. We compared these results
with the results observed for a single process. We found
the results were indistinguishable and they showed the
same performance benefits of 60–70%. This demon-
strates that Cosy is beneficial in a multiprocessor envi-
ronment as well.

Bonnie We explain the results of Bonnie in three
phases: fastread, rewrite, and fastwrite.

As shown in Figure 5(a), the Cosy version of
fastread showed a considerable performance im-
provement of 80%, until it is bound by the amount of

9



0

10

20

30

40

50

60

70

80

90

10 100 1000

E
la

ps
ed

 T
im

e 
(p

er
ce

nt
ag

e 
im

po
ve

m
en

t)

File Size (MB) (log)

VAN
COSY

COSY_FAST

0

10

20

30

40

50

60

70

80

90

10 100 1000

S
ys

te
m

 T
im

e 
(p

er
ce

nt
ag

e 
im

pr
ov

em
en

t)

File Size (MB) (log)

VAN
COSY

COSY_FAST

Figure 3: Elapsed and system time percentage improvements
for the Cosy database benchmark (over VAN).
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database benchmark.
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available memory (in this case 128MB). Cosy provides
savings in system time by avoiding unnecessary data
copies. When an application triggers heavy I/O activ-
ity, the savings achieved by Cosy become less signifi-
cant when compared to I/O time. Hence, we observed
the drop in the performance improvement at 128MB.

The rewrite phase using Cosy shows performance
benefits of 30–90% over the VAN. COSY FAST exploits
the zero-copy technique to bypass the data copy back to
the user. The major improvement comes from savings in
system time. The drop in improvement occurs when the
benchmark begins to fill up the memory as indicated by
Figure 5(b).

Figure 5(c) indicates that the Cosy version of
fastwrite is better than VAN by 45–90% for file sizes
up to 64MB. When the benchmark begins to fill avail-
able system memory (128MB), the performance gains
observed in Cosy are overshadowed by the increasing
I/O time and by Linux’s page flushing algorithm (sus-
pend all process activity and purge caches aggressively).
fastwrite is an I/O-intensive benchmark. Currently,
Cosy is not designed to help with I/O; hence, as the
I/O activity increases, the Cosy performance benefits be-
come less significant.

ls Figure 6 shows the system, user, and elapsed times
taken by VAN, COSY, and COSY FAST for listing of 5000
and 50000 files. COSY shows an 8% improvement over
VAN. COSY FAST performs 85% better than VAN for
both the cases. The results indicate that Cosy performs
well for small as well as large workloads, demonstrating
its scalability.
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Figure 6: Elapsed, system, and user times for the Cosy
ls -l benchmark. Note the left and right side of the graph
use different scales.

System time savings for COSY are small when com-
pared to COSY FAST. COSY FAST uses the zero-copy
version of stat and hence it is faster than the non-zero-
copy version (COSY). We performed this benchmark
with a cold cache. The improvements in the COSY FAST

results indicate that Cosy is useful even when the data

is not present in memory, provided the amount of I/O
involved is small.

grep Cosy versions of grep perform better than VAN.
Figure 7 shows that COSY is 13% better than VAN and
COSY FAST is 20% better than VAN.
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Figure 7: Elapsed time percentage improvements for the Cosy
grep benchmark (compared to VAN).

The system time for the Cosy versions of grep is
large compared to VAN. System time is primarily com-
posed of three components, (1) the time taken by in-
memory data copies, (2) the time taken by the user-
supplied function, and (3) other system call and Cosy
overhead. In the Cosy versions of grep, major chunks
of code are executed in the kernel, resulting in an in-
crease in the system time taken by user functions. How-
ever, the user time for the Cosy versions of grep is re-
duced by that same amount. The savings in data copies
(a component of system time) and in user time more
than compensate for the increase in system time due
to the user function. From this result we can conclude
that even if the system time increases, the overall per-
formance can be improved as a result of savings in data
copies and user time.

5 Related Work
The related work section is divided into three parts:
composing multiple operations into a single call, zero-
copy techniques, and security techniques for executing
user code in kernel mode.

5.1 Composition of Operations
The networking community has long known that bet-
ter throughput can be achieved by exchanging more
data at once than repeatedly in smaller units. Analy-
sis of NFSv2 traffic has shown that a large fraction of
RPC calls use a READDIR operation followed by many
GETATTR operations [26, 32]. To improve its perfor-
mance, the NFSv3 protocol includes a new RPC pro-

11



−60

−40

−20

0

20

40

60

80

100

4 8 16 32 64 128 256

E
la

ps
ed

 T
im

e 
(%

 im
po

ve
m

en
t)

File size (MB) (log)

VAN
COSY_FAST

512  

(a) Fastread

−60

−40

−20

0

20

40

60

80

100

4 8 16 32 64 128 256

E
la

ps
ed

 T
im

e 
(%

 im
po

ve
m

en
t)

File size (MB) (log)

VAN
COSY_FAST

512  

(b) Rewrite

−60

−40

−20

0

20

40

60

80

100

4 8 16 32 64 128 256

E
la

ps
ed

 T
im

e 
(%

 im
po

ve
m

en
t)

File size (MB) (log)

VAN
COSY

512  

(c) Fastwrite

Figure 5: Elapsed time percentage improvements for the Cosy Bonnie fastread, rewrite, and fastwrite benchmark (Compared to
VAN).

cedure called READDIRPLUS [5]. This procedure com-
bines READDIR and GETATTR from NFSv2: in one op-
eration, READDIRPLUS reads the contents of a directory
and returns both the entries in that directory and the at-
tributes for each entry. The NFSv4 design took this idea
a step further by creating simple Compound Operations
[24]. An NFSv4 client can combine any number of ba-
sic NFS operations into a single compound message and
send that entire message to an NFSv4 server for process-
ing. The NFSv4 server processes each operation in the
compound in turn, returning results for each operation in
one reply. Aggregation of NFSv4 operations can provide
performance benefits over slow network channels. In the
context of system calls, the slow channels that prohibit
the user application from getting optimal performance
are context switches and data copies. We apply the idea
of aggregation to make the slow channel more efficient,
thereby improving the performance of applications.

Many Internet applications such as HTTP and FTP
servers often perform a common task: read a file from
disk and send it over the network to a remote client. To
achieve this in user level, a program must open the file,
read its data, and write it out on a socket. These ac-
tions require several context switches and data copies.
To speed up this common action, several vendors cre-
ated a new system call that can send a file’s contents to
an outgoing socket in one operation. AIX and Linux
use a system call called sendfile() and Microsoft’s
IIS has a similar function named TransmitFile().
HTTP servers using such new system calls report perfor-
mance improvements ranging from 92% to 116% [12].
sendfile() and similar system calls require addi-
tional effort for each new system call. Many systems
also have a limit on the number of system calls that can
be easily integrated into the kernel. Just as the transi-

tion from NFSv3 to NFSv4 recognized that not every
conceivable compound should require a new operation,
Cosy can create new compounds without the need for ad-
ditional kernel modifications or many new system calls.

5.2 Zero-Copy Techniques

Zero-copy is an old concept and many ideas have been
explored by researchers in different contexts. The
essence of all of these attempts is to build a fast path
between the user application, the kernel and the under-
lying device. IBM’s adaptive fast path architecture [12]
aims to improve the efficiency of network servers using a
zero-copy path by keeping the static contents in a RAM-
based cache. Zero-copy had also been used on file data
to enhance the system performance by doing intelligent
I/O buffer management (known as fast buffers) [15] and
data transfer across the protection domain boundaries.
The fast buffer facility combines virtual page remap-
ping with shared virtual memory. Tux is a commercially
available in-kernel Web server that utilizes zero-copy
techniques for network and disk operations [19]. Dif-
ferent zero-copy techniques are useful for different ap-
plications. We studied these zero-copy techniques and
adopted some of them. Cosy provides a generalized in-
terface to utilize these zero-copy techniques.

5.3 Kernel Space Execution of Untrusted
Code

Typed Assembly Language (TAL) is an approach toward
safe execution of user programs in kernel mode [28].
TAL is a safe kernel mode execution mechanism. The
safety is verified through the type checker, thus relying
on static code checking to avoid runtime checking. Still,
array bounds checking (similar to BCC [3]) is done at
runtime adding overhead. In our approach, we use hard-
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ware security mechanisms such as segmentation to pro-
tect against malicious memory references [6]. This re-
duces runtime overhead.

Extensible operating systems like SPIN [2], ExoKer-
nel [9, 11], and VINO [22] let an application apply cer-
tain customizations to tailor the behavior of the oper-
ating system to the needs of the application. The goal
of the research in this area is to let applications extend
the behavior of the system without compromising the in-
tegrity and safety of the system.

The ExoKernel allows users to describe the on-disk
data structures and the methods to implement them. Ex-
oKernels provide application specific handlers (ASHs)
[30] that facilitate downloading code into the kernel to
improve performance of networking applications.

SPIN allows the downloading and running of type-
safe Modula-3 code. Depending upon the application
SPIN can be extended by adding a new extension writ-
ten in Modula-3. Extensions add special features to the
existing operating system in order to enhance the perfor-
mance of the application.

VINO shares a similar goal as that of the ExoKer-
nel or SPIN. VINO allows extensions written in C or
C++ to be downloaded into the kernel. VINO uses fault
isolation via software to ensure the safety of the exten-
sions [23]. It also uses a safe compiler developed at Har-
vard to validate memory accesses in the extension. This
compiler also assures protection against self-modifying
code. Cosy shares many commonalities with this work
such as compiler-assisted techniques to ensure the safety
of the untrusted code. Cosy, however, uses hardware-
assisted fault isolation.

The problem with these approaches is their special-
ization: using specialized operating systems that are not
widely used, or requiring languages that are not com-
mon. Conversely, Cosy is prototyped on a common
operating system (Linux) and it supports a subset of a
widely used language (C).

Lucco uses the software fault isolation [29] to run ap-
plications written in any language securely in the ker-
nel. They use a binary rewriting technique to add ex-
plicit checks to verify the memory accesses and branch
addresses. We provide similar guarantees but instead of
using software based memory validation, we use the x86
segmentation feature to achieve the same goal. Software
checks add overhead when working with extensions in-
volving movement across multiple segments.

Proof carrying code [14] is another technique that al-
lows the execution of untrusted code without adding run-
time checks. While compiling the code, it is verified
against a given policy. If the code satisfies that policy,
then a proof is attached. The proof is verified quickly
during runtime. For very complex code, generating a
safety proof may be an undecidable task [14]; because

of this, tedious hand-crafting of code may be necessary.
Packet filters also address the problem of porting user

code to the kernel [10, 21]. Mogul et. al. and the BSD
packet filter improve the performance of user-level net-
work protocols by making use of a kernel resident, pro-
tocol independent packet filter. The concept of a packet
filter is inherently limited to network protocols. It is use-
ful under special circumstances; however, it is not meant
to be sufficiently general to apply to all sorts of user ap-
plications. Our approach provides a more generic API
which is not present in the packet filter.

Java 2 Micro Edition is designed to function as an
operating system for embedded devices. Devices such
as cellular phones, handhelds, and consumer electron-
ics can download code and then safely execute it [27].
Java converts source code into an intermediate form to
be interpreted by a Java Virtual Machine within a sand-
box. Both Java and Cosy provide safety through runtime
checking. Java, however, interprets its byte code and al-
lows for a greater variety of extensions; Cosy simply de-
codes instructions passed to it from user space.

One closely-related work to ours is Riesen’s use of
kernel extensions to decrease the latency of user level
communication [18]. The basic idea in both approaches
is to move user code into the kernel and execute it in
kernel mode. Riesen’s proposal discusses various ap-
proaches that are adopted to address this problem. It
compares various methods to achieve improved perfor-
mance and then proposes to use the approach of a ker-
nel embedded interpreter to safely introduce untrusted
user-level code into the kernel. Riesen discusses the use
of complier techniques to convert a C program into in-
termediate low-level assembly code that can be directly
executed by the interpreter residing inside the kernel.
Riesen’s work differs from ours in that we do not inter-
pret code to be loaded into the kernel but rather encode
several calls into one structure. Unfortunately, Riesen’s
work was neither officially published nor completed and
hence results are not available for comparison.

6 Conclusions
Our work has the following three contributions:

� We provide a generic interface to several zero-copy
techniques. Thus many applications can benefit
from Cosy.

� Cosy supports a subset of a widely-used language,
namely C, making Cosy easy to work with. Cosy
allows loops, arithmetic operations, and even func-
tion calls, thus allowing a wide range of code to be
moved into the kernel.

� We have prototyped Cosy on Linux, which is a
commonly-used operating system. Many widely-
used user applications exist for Linux. We
show improvement in the performance of such
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commonly-used applications. This improvement is
achieved without compromising safety.

We have prototyped the Cosy system in Linux and
evaluated it under a variety of workloads. Our micro-
benchmarks show that individual system calls are sped
up by 40–90% for non-I/O bound common user applica-
tions. Moreover, we modified popular user applications
that exhibit sequential or random access patterns (e.g., a
database) to use Cosy. For non-I/O bound applications,
with just very minimal code changes, we achieved a per-
formance speedup of up to 20–80% over that of unmod-
ified versions of these applications

6.1 Future Work
The Cosy work is an important step toward the ultimate
goal of being able to execute unmodified Unix/C pro-
grams in kernel mode. The major hurdles in achieving
this goal are safety concerns.

We plan to explore heuristic approaches to authenti-
cate untrusted code. The behavior of untrusted code will
be observed for some specific period and once the un-
trusted code is considered safe, the security checks will
be dynamically turned off. This will allow us to address
the current safety limitations involving self-modifying
and hand-crafted user-supplied functions.

Intel’s next generation processors are designed to sup-
port security technology that will have a protected space
in main memory for a secure execution mode [17]. We
plan to explore such hardware features to achieve secure
execution of code in the kernel with minimal overhead.

To extend the performance gains achieved by Cosy,
we are designing an I/O-aware version of Cosy. We are
exploring various smart-disk technologies [25] and typ-
ical disk access patterns to make Cosy I/O conscious.
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