
A Versatile Persistent Caching Framework for File Systems
Gopalan Sivathanu and Erez Zadok

Stony Brook University

Technical Report FSL-05-05

Abstract
We propose and evaluate an approach for decoupling

persistent-cache management from general file system
design. Several distributed file systems maintain a per-
sistent cache of data to speed up accesses. Most of these
file systems retain complete control over various aspects
of cache management, such as granularity of caching,
and policies for cache placement and eviction. Hard-
coding cache management into the file system often re-
sults in sub-optimal performance as the clients of the file
system are prevented from exploiting information about
their workload in order to tune cache management.

We introduce xCachefs, a framework that allows
clients to transparently augment the cache management
of the file system and customize the caching policy
based on their resources and workload. xCachefs can be
used to cache data persistently from any slow file system
to a faster file system. It mounts over two underlying file
systems, which can be local disk file systems like Ext2
or remote file systems like NFS. xCachefs maintains the
same directory structure as in the source file system, so
that disconnected reads are possible when the source file
system is down.

1 Introduction
Caching is a common way of improving I/O perfor-
mance. Aside from non-persistent caching, caching of
file data from slow, possibly remote, file systems onto
faster file systems can significantly increase the perfor-
mance of slow file systems. Also, the cache remains
persistent across reboots. The main problem with most
of today’s persistent caching mechanisms in file systems
like AFS [1] is that the scheme is mostly hardcoded into
the file systems such that they provide generic caching
policies for a variety of requirements. These generic
caching policies often end up being either sub-optimal
or unsuitable for clients with specific needs and condi-
tions. For example, in a system where the read pattern
is sequential for the entire file, caching it in full during
the first read helps in improving performance rather than
caching each page separately. The same is not appropri-
ate in a system where reads are random and few. Having
the caching mechanism separate helps in integrating per-
sistent caching to any file system. For example, a large

IDE RAID array that has an Ext2 file system can cache
the recently-accessed data into a smaller but faster SCSI
disk to improve performance. The same could be done
for a local disk; it can be cached to a faster flash drive.

The second problem with the persistent caching
mechanisms of present distributed file systems is that
they have a separate name space for the cache. Hav-
ing the persistent cache directory structure as an exact
replica of the source file system is useful even when
xCachefs is not mounted. For example, if the cache has
the same structure as the source, disconnected reads are
possible directly from the cache, as in Coda [2].

In this paper we present a decoupled caching mech-
anism called xCachefs. With xCachefs, data can be
cached from any file system to a faster file system.
xCachefs provides several options that can be setup
based on user workloads to maximize performance. We
implemented a prototype of xCachefs for Linux and
evaluated its performance. xCachefs yielded a perfor-
mance enhancement of 64% and 20% for normal read
and read-write workloads respectively over NFS.

2 Background
Persistent caching in file systems is not a new idea. The
Solaris CacheFS [5] is capable of caching files from
remote file systems to a local disk directory. Solaris
CacheFS is tailored to work with NFS as the source
file system, though it can be used for other file sys-
tems as well. CacheFS does not maintain the direc-
tory structure of the source file system in its code. It
stores cache data in the form of a database. The An-
drew File System [1], a popular distributed file system,
performs persistent caching of file data. AFS clients
keep pieces of commonly-used files on local disk. The
caching mechanism used by AFS is integrated to the file
system itself and it cannot be used with any other file
system. Coda [2] performs client-side persistent caching
to enable disconnected operations. The central idea be-
hind Coda is that caching of data, widely used for per-
formance, can also be exploited to improve availabil-
ity. Sprite [3] uses a simple distributed mechanism for
caching files among a networked collection of worksta-
tions. It ensures consistency of the cache even when
multiple clients access and update data simultaneously.
This caching mechanism is integrated into the Sprite

1



Network File System.

3 Design
The main goals behind the design of xCachefs are:
• To develop a framework useful to cache file data

from any slow file system to a faster file system.
• To provide customizable options that can be set up

based on the nature of the workload and access pat-
terns, so as to maximize performance.

• To maintain the directory structure of the cache as
the exact replica of the source file system struc-
ture, so that disconnected reads are possible with-
out modifying or restarting the applications.

We designed xCachefs as a stackable file system that
mounts on top of two underlying file systems, the source
and the cache file systems. Stackable file systems incre-
mentally add new features to existing file systems [6].
A stackable file system operates between the virtual file
system (VFS) and the lower level file system. It inter-
cepts calls for performing special operations and even-
tually redirects them to the lower level file systems.

Figure 1 shows the overall structure of xCachefs.
During every read, xCachefs checks if the requested
page is in the cache file system. On a cache miss,
xCachefs reads the page from the source file system and
writes it to the cache. All writes are performed on both
the cache and source file systems. xCachefs compares
the file meta-data during every open to check if the cache
is stale and if so it updates or removes the cached copy
appropriately. Each check does not require disk I/O as
recently-accessed inodes are cached in the VFS icache.

Cache Cleaner User Processes

Ke
rn

el
Us

er

Copy up
Meta operations

Writes, reads upon cache miss
Lower level file systems

Virtual File System (VFS)

Cache File System Source File System

Meta Operations
Reads and writes

xCachefs

Figure 1: xCachefs Structure

Caching Options. xCachefs caches file data from the
source file system either at the page-level or at the file
level. It has a configurable parameter called the size
threshold. Files whose sizes are below the size thresh-
old are cached in full upon an open. Those files that are
larger than the size threshold are cached only one page
at a time as the pages are read. If files below the size
threshold grow due to appends, xCachefs automatically
switches to page-level caching for those files. Similarly,
if a large file is truncated to a size below the thresh-
old, xCachefs caches it in full the next time it is opened.
Based on average file sizes and the access patterns, users

can choose a suitable value for the size threshold. Gen-
erally it is more efficient to adopt page-level caching for
large files that are not accessed sequentially. For small
files that are usually read in full, whole file caching is
helpful. Since page-level caching has additional over-
heads due to management of bitmaps, performing page-
level caching for small files is less efficient.

Cache Structure and Reclamation. xCachefs main-
tains in the cache, the same directory structure and file
naming as the source. Hence, all file system meta op-
erations like create, unlink, mkdir etc., are performed in
an identical manner in both the cache and the source file
systems. Maintaining the same directory structure in the
cache has several advantages. When the source file sys-
tem is not accessible due to system or network failures,
disconnected reads are possible directly from the cache
file system without modifications to the applications that
are running. xCachefs has a disconnected mode of op-
eration which can be set through an ioctl that directs
all reads to the cache branch.

Typically, the cache file system has less storage space
compared to the source branch. This is because the
cache file system is expected to be in a faster media than
the source and hence might be expensive. For example,
the source file system can be on a large IDE RAID array,
and the cache can be a fast SCSI disk of smaller storage.
Therefore, we have a user level cleaning utility that runs
periodically to delete the least recently-used files from
the cache file system, to free up space for new files. The
user level cleaner performs cleaning if the cache size has
grown larger than an upper threshold. It deletes files
from the cache until the size is below a lower threshold.
Typically the upper and lower threshold are around 90%
and 70%, respectively.

Implementation. We implemented a prototype of
xCachefs as a Linux kernel module. xCachefs has
10,663 lines of kernel code, of which 4,227 lines of code
belong to the FiST [7] generated template that we used
as our base.

Files whose sizes are smaller than the size thresh-
old (a mount option), are copied in full to the cache
branch whenever an open for the file is called. Page-
level caching is performed in the readpage function
of the address space operations (a ops). Page bitmaps
for partially-cached files are stored in separate files.

Directories are cached during lookup, so as to en-
sure that the directory structure corresponding to a file
always exists in the cache branch prior to caching that
file. Since a lookup is always done before an open,
the above invariant holds. The create, unlink, and
mkdir operations are performed on both cache and
source file systems. The permission and readdir
operations are performed only on the source branch.

xCachefs has four ioctls. The STALE CHECK and
NO STALE CHECK ioctls turn on or off the stale-

2



ness checking. The CONNECTED and DISCONNECTED
ioctls switch between connected and disconnected
modes of operation.

4 Evaluation
We evaluated the performance of xCachefs with two
configurations:
• SCSI-IDE: The source as an Ext2 file system on a

5,200 rpm IDE disk and the cache as an Ext2 file
system on a 15,000 rpm SCSI disk.

• SCSI-NFS: The source as an NFS mount over a
100Mbps Ethernet link and the cache branch as an
Ext2 file system on a 15,000 rpm SCSI disk.

For all benchmarks we used Linux kernel 2.4.27 run-
ning on a 1.7GHz Pentium 4 with 1GB RAM. We un-
mounted and remounted the file systems before each run
of the benchmarks to ensure cold caches. We ran all
benchmarks at least ten times and we computed 95%
confidence intervals for the mean elapsed, system, user
and wait time. In each case, the half widths of the in-
tervals were less than 5% of the mean. Wait time is the
elapsed time less CPU time and consists mostly of I/O,
but process scheduling can also affect it.

To measure the performance of xCachefs, we used
several benchmarks with different CPU and I/O charac-
teristic. For an I/O-intensive benchmark, we used Post-
mark, a popular file system benchmarking tool. We con-
figured Postmark to create 10,000 files (between 512
bytes and 10KB) and perform 100,000 transactions in
200 directories. For a CPU-intensive benchmark, we
compiled the Am-utils package [4]. We used Am-utils
version 6.1b3: it contains over 60,000 lines of C code
in 430 files. Although the Am-utils compile is CPU-
intensive, it contains a fair mix of file system operations.
We ran Postmark and Am-utils compilation benchmarks
on both SCSI-IDE and SCSI-NFS configurations. We also
tested xCachefs using read micro-benchmarks. First, we
performed a recursive grep on the kernel source tree.
This test was run on both SCSI-IDE and SCSI-NFS se-
tups with warm and cold persistent cache conditions.
To evaluate the performance of per page and whole file
caching, we wrote a program that reads selected pages
from 500 files of size 1MB each. The program has 20
runs; during each run the program reads one page from
each of the 500 files. We ran this test with the size
threshold values 0 and 409,600 bytes so as to evaluate
per page and whole file caching.

Postmark Results. The Postmark results are shown in
Figure 2. xCachefs on the SCSI-IDE configuration shows
an elapsed time overhead of 44% over the source IDE.
This is mostly because the meta operations and writes
are done on both source and cache file systems in a syn-
chronous manner. xCachefs on the SCSI-NFS combina-
tion shows a small performance improvement of 1.6%
elapsed time compared to plain NFS. This is because

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

xCfs[NFS]NFSxCfs[IDE]IDESCSI

El
ap

se
d 

tim
e 

(s
ec

)

17s 22s 32s

405s 399sWait
User

System

Figure 2: Postmark Results

NFS is several times slower than the SCSI disk which
is the cache file system and hence read operations are
sped-up by a larger ratio. Postmark is an I/O-intensive
benchmark which performs creates, deletes, reads, and
writes. Because most of the operations are performed
on both file systems, xCachefs does not show a notable
performance improvement.

 0

 50

 100

 150

 200

 250

 300

xCfs[NFS]NFSxCfs[IDE]IDESCSI

El
ap

se
d 

tim
e 

(s
ec

)

189s 189s 196s

280s

223s

Wait
User

System

Figure 3: Am-utils Results

Am-utils Results. Figure 3 shows the Am-utils com-
pilation results. xCachefs on the SCSI-IDE combination
shows an elapsed time overhead of 3% compared to the
source IDE disk. As we can see from the figure, there
is no difference in speed between the source IDE and
cache SCSI disks for Am-utils compilation. Therefore
the overhead in xCachefs is due to the meta-data oper-
ations and writes, that are done synchronously to both
file systems. On the other hand, for the SCSI-NFS com-
bination, xCachefs showed a performance improvement
of 20% elapsed time compared to the source NFS. This
is because of the significant speed difference between
the source and the cache branches. Therefore to achieve
good performance gains from xCachefs for write inten-
sive applications, there must be a significant difference
in speeds between the source and cache file systems.
For read workloads, the speed difference does not matter
much.
Microbenchmarks. Figure 4 shows the grep test re-
sults. In the SCSI-IDE configuration, under cold cache
conditions, xCachefs showed an overhead of 1.6%
elapsed time compared to the source IDE disk. This
is because under cold cache conditions, xCachefs per-
forms an additional write to copy data to the cache
branch. Under warm cache conditions, xCachefs

3



 0

 20

 40

 60

 80

 100

 120

 140

xC-warmxC-coldNFSxC-warmxC-coldIDESCSI

El
ap

se
d 

tim
e 

(s
ec

)

31s

56s 57s
47s

127s

108s

46s

Wait
User

System

Figure 4: Grep -r test results

showed a performance improvement of 16% elapsed
time. This is because all reads are directed to the faster
cache branch. In the SCSI-NFS configuration, even un-
der cold cache conditions, xCachefs had a performance
improvement of 37%. Here it is interesting to note that
even though there is an additional write to the cache file
system, xCachefs performs better than the source file
system. This is because xCachefs caches small files in
full and hence reduces the number of getattr calls
sent to the NFS server. In plain NFS, computation
and I/O are more interleaved during the grep -r test,
thereby requiring more getattr calls, which is not the
case with xCachefs over NFS. Under warm cache con-
dition, xCachefs had an improvement of 92% elapsed
time, basically because all reads in this case are directed
to the faster SCSI disk acting as the cache file system.

 0

 10

 20

 30

 40

 50

xCwf-warmxCpp-warmxCwf-coldxCpp-coldIDESCSI

El
ap

se
d 

tim
e 

(s
ec

)

18s

51s 51s

18s

2s

18s

Wait
User

System

Figure 5: Read micro-benchmark Results

Figure 5 shows the results of the read micro-
benchmark under the SCSI-IDE configuration. The re-
sults for the SCSI-NFS configuration were mostly simi-
lar. This is because this benchmark reads selected pages
from files, and thus the total size of data read is less
for the network speed to significantly influence the per-
formance. From the figure, we can see that there is a
significant difference in speeds of IDE and SCSI disks
for this benchmark as it involves a lot of seeks. Un-
der cold cache conditions, the per page caching con-
figuration did not show any difference in performance
as the total amount of extra data written to the cache
is negligible. However, the whole file caching mode
yielded a performance improvement of 64% elapsed
time compared to IDE. This is because during the first
run, all files are copied to the cache branch and they

reside in the memory, eliminating disk requests for sub-
sequent runs. Under warm cache conditions, per-page
caching mode yielded a performance enhancement of
95% elapsed time. This is because the pages that are
cached in the sparse file are physically close together
on disk and hence seeks are reduced to a large extent.
The whole file caching mode under warm cache yielded
a performance improvement of 63% elapsed time com-
pared to IDE; this is equal to the performance of the
cache SCSI disk. This is because all reads are performed
only on the cache branch, but there is no seek time re-
duction in this case.

5 Conclusions
We have described the design and evaluation of an ap-
proach for decoupled persistent caching for file systems.
Our main goal while designing xCachefs was versatil-
ity. File data can be cached from any slow file system
to any faster file system while maintaining the original
directory and file structure. The IDE-SCSI configura-
tion is a good example for the portability of xCachefs.
Our evaluations show that for read intensive applications
xCachefs can provide upto 95% performance improve-
ment.

Future Work. We plan to extend xCachefs in order to
improve its versatility. We plan to improve performance
by performing meta-data operations and file writes asyn-
chronously through a kernel thread. This could also help
in parallelizing the I/O in the cache and source file sys-
tems. We also plan to support read-write disconnected
operation and conflict resolutions.

References
[1] J.H. Howard. An Overview of the Andrew File System. In

Proceedings of the Winter USENIX Technical Conference,
February 1988.

[2] J. J. Kistler and M. Satyanarayanan. Disconnected op-
eration in the Coda file system. In Proceedings of 13th
ACM Symposium on Operating Systems Principles, pages
213–25, Asilomar Conference Center, Pacific Grove, CA,
October 1991. ACM Press.

[3] M.Nelson, B.Welson, and J.Ousterhout. Caching in the
sprite network file system. In Proceedings of the eleventh
ACM Symposium on Operating systems principles, 1987.

[4] J. S. Pendry, N. Williams, and E. Zadok. Am-utils User
Manual, 6.1b3 edition, July 2003. www.am-utils.org.

[5] SunSoft. Cache file system (CacheFS). Technical report,
Sun Microsystems, Inc., February 1994.

[6] E. Zadok and I. Bădulescu. A stackable file system in-
terface for Linux. In LinuxExpo Conference Proceedings,
pages 141–151, Raleigh, NC, May 1999.

[7] E. Zadok and J. Nieh. FiST: A Language for Stackable
File Systems. In Proceedings of the Annual USENIX
Technical Conference, pages 55–70, San Diego, CA, June
2000.

4


